
- Page 1 -

Project Proposal

Programming Languages and Translators – COMS W4115

Team: Le Chang (lc2879@columbia.edu)
 Qiuzi Shangguan (qs2130@columbia.edu)

Adam Dossa (aid2112@columbia.edu)
Maria Taku (mat2185@columbia.edu)

Date: September 26, 2012

TML

Table Manipulation Language

Language Description

 The purpose of TML is to provide users with an efficient and simple language for

building, editing, and manipulating tables/spreadsheets. For example, through only a few simple

lines of code, a user can create a spreadsheet, populate the spreadsheet with data, edit the data,

and even perform mathematical operations on this data (e.g., summing values in various cells,

etc.) . As one could imagine, performing operations such as this in Java or C++ could take

hundreds of lines of code!

 At a higher level, the functionality of this language could be used to allow programmers

to quickly and efficiently manage budgets, calculate yearly taxes, or otherwise keep track of

various types of numerical data and the relationships between this data. It is even possible for

programmers to use this feature to implement and manipulate more advanced data structures

such as Stacks, Heaps, or Graphs.

Problems Solved By the Language

 As mentioned above, this language allows users to create and manipulate spreadsheets

through a minimal number of lines of code. According to our knowledge, functionality like this

is not readily available in the common programming languages such as C/C++, Java, Python, etc.

In other words, this language can be used to meet the various needs of financial, statistical and

engineering software.

Syntax

1) Basic Data Types: The basic data types will be:

 int: type of Integers

- Page 2 -

 float: type of floating numbers

 char: type of single character

 string: type sequence of characters

 cell: type of cells/elements in table

 table: type of table/spreadsheet

2) Comments: The pound sign (#) will be used to indicate to-end-of-line comments. For

example:

 create(4,4); # Comments can go here

3) Statement ending: Every statement (except control statements) should end with “;” . For

example:

 delete(myTable);

4) Control Statements: TML will also include the basic "if/then/else" and "for" control

statements. The syntax of the control statements will mimic the ones generally accepted by

the programming community, below are some examples that show the grammar of the TML

language:

 for (int i = 0, i<10, i++){

 # perform some action

 }

 if (sumCells([*,2]>budget){

 print(”your budget is too high”);

 } else {

 # try doing something else

 }

5) Operators: operators are supported to perform various mathematical calculations between

numbers.

 Basic operator:

 E + F: Addition

 E - F: Subtraction

 E * F: Multiplication

 E/ F: Division

 E > F: Greater than

- Page 3 -

 E < F: Less than

 E == F: Equals

 E >=F: Greater than or equal to

 E <= F: Less than or equal to.

6) Built-in functions (for table manipulation, etc.):

 Table a = createTable(8,8); #create a new table

 insertCell(tableName, [row,column], value) ; #put element into table

 deleteCell(tableName, [row,column], value); #delete element in table

 valueCell(tableName, [row,column]); #get the value from cell

 showTable(tablename); #print table

 sumCells(tableName, [row,column]); #sum cells in [row, column]

The values of the “rows” and “columns” can be either a single value, a wildcard, or a range (see

the Representative Program for examples).

Representative Program

 This representative program illustrates the building of a spreadsheet, populating the

spreadsheet with data, editing/updating the data, and displaying the spreadsheet. Note that in

general, when specifying a cell, the row/column values are put inside brackets (for example,

[row,column]) to make the program easier to read.

Creates a 4x4 spreadsheet, with cells initialized to NULL and returns it

Table myTable = createTable(4,4);

Inserts the value 1000 into the cell at row 2, column 2 in myTable

insertCell(myTable,[2,2],1000);

Inserts the value 2000 into ALL cells in column 1 in myTable

insertCell(myTable,[*,1], 2000);

Inserts the value 3000 into ALL cells in row 1 in myTable. Note that the previous value of

2000 in

row 1, column 1, will be overwritten

insertCell(myTable,[1,*], 3000);

- Page 4 -

#Inserts data (1,22,3) into rows 1-3, column 3 in myTable

insertCell(myTable,[1-3,3],(1,22,33));

Inserts the sum of column 1 into cell row 4, column 2

insertCell(myTable,[4,2],sumCell(myTable,[*,1]))

Inserts the sum of row 1, from columns 3 to 4, into cell row 4, column 4

insertCell(myTable,[4,4],sumCell(myTable,[1,3-4]));

Returns the value of the cell with row 4, column 4

valueCell(myTable, [4,4]);

Prints the table to the screen

showTable(myTable);

Compares the difference between the value in cell row 4, column 2 and the sum of the cells in

column 1 with 3000

if ((sumCells(myTable,[*,1]) - valueCell([2,2]) -) > 3000) { # 9000 - 1000 > 3000 → true

print("Your Budget is too high.");

}

 Sample Output to Representative Program:

 >> 3001

 >>

 A B C D ...

1 | 3000 | 3000 | 1 | 3000 |

2 | 2000 | 1000 | 22 | |

3 | 2000 | | 3 | |

4 | 2000 | 9000 | | 3001 |

>> Your Budget is too high.

Note that the column titles are output as letters (A-D) and the row title are output as numbers (1-

4) to make it easier for the user to read.

