
MatCab Language Design Proposal 

 

Tianchen Yu (ty2275), Cheng Xiang (cx2142), Yu Qiao (yq2145) and Ran Yu (ry2239) 

 

Introduction 
MatCab, a programming language which simplifies and accelerates matrix 

manipulations that we propose, is a C-style, in terms of syntax, language that 

particularly aims at easier and faster matrix computing for programmers. Matrix 

computing is one of the most common linear algebra operations used in scientific 

computation. Operations like image processing and data mining both require 

considerable amount of highly efficient matrix calculations. Our MatCab language, 

which is the combination of matrix and cab, provides an easy way to apply basic 

arithmetical operation to matrices and its C-like syntax can help C programmers get rid 

of the burden of hundreds of lines of c-code for matrix computing, making the 

computation simple, compact and easy to read. 

 

We introduce new operators dedicatedly designed for matrices, thus making MatCab 

simpler in syntax to perform calculations. At the low level of MatCab, we introduce 

parallel computing techniques to speed up the process. . When performing linear 

algebra computation, MatCab will allocate some or all of the tasks to GPU, alleviating 

CPU burdens and making the best of GPU capacity. To be precise, MatCab takes 

advantage of CUDA language and GPU accelerations, thus making it faster in scientific 

computation 

 

 

Key Features 
MatCab is a strong typed programming language. Our target users are fluent C language 

programmers with high demand of fast and simple matrix calculations. To simplify the 

syntax, MatCab supports specific operators used for matrix computing. 

 

 

Language Specification 
 

Variable declaration: 

 type: <variable name>; 

 

Data types: 

int, float, char, string, array, mat, vector 

  



 (in that mat is the data type of a matrix) 

 

 mat a=[1,2; 2,3; 2,4]//Declare and initialize a 3 X 2 matrix with initial value 

 mat b=zeros(3,4)  //This will initialize a 3 X 4 matrix with all elements set to 

zeros 

 

Assignment and function definition: 

 = 

 

Functions: 

 fun <function_name> (type <argument_name>, ...) {<body>; return(optional);} 

 

Control flow: 

 if-else:  

if (<expr>),  

{<body>;} 

else 

{<body>;} 

 

Loops: while and for 

while(<expr>) 

{<body>;} 

 

for (<expr1>,<expr2>,<expr3>) 

{<body>;} 

 

another way to write for loops: 

for(<variable_name> in <variable_name>) 

{<body>;}  

 

Boolean operators: 

 and, or, ! 

 

Arithmetic operators: 

 + - * / = != < > <= >= % 

 

Matrix operators: 

 +  -  *  .*(cross product)  ‘(transpose operator) “(inverse operator)  

 [] return the row vector 

 [][] return the element 

 



//IN BNF 

primary_exp: 

 id 

 | string 

 | const 

 

exp: 

 assignment_exp 

 | exp ‘,’ assignment_exp 

 

assignment_exp: 

 id assignment_operator compute_exp 

 | conditional_exp 

 

assignment_operator: 

‘=’ | ‘+=’ | ‘-=’   

 

compute_exp: 

 id 

 | id compute_operator compute_exp 

 

compute_operator: 

 ‘+’|’-’|’*’|’/’|’*.’ 

(where ‘*.’ is the operator designed for matrix multiplication. More operators are to be 

introduced along with the progress of our project) 

 

conditional_exp: 

 primary_exp compare_operator primary_exp 

 

compare_operator: 

 ‘>’ | ‘<’ | ‘<=’ | ‘>=’ 

 

stat: 

 exp_stat 

 | selection_stat 

 | iteration_stat 

 

exp_stat 

 exp ‘;’ 

 |‘;’ 

 



iteration_stat: 

 ‘while’ ‘(’ exp ‘)’ stat 

 | ‘do’ stat ‘while’ ‘(’ exp ‘)’ ‘;’ 

 | ‘for’ ‘(’ exp ‘;’ exp ‘;’ exp ‘)’ stat 

 

selection_stat: 

 ‘if’ ‘(’ exp ‘)’ stat 

 | ‘if’ ‘(’ exp ‘)’ stat ‘else’ stat 

 | ‘switch’ ‘(’ exp ‘)’ stat 

 

const: 

 int_const 

 | char_const 

 | float_const 

 

 

Sample Codes 

 #define THRESHOLD 100 

 

int main() 

{ 

 mat a=[1,2; 2,3; 2,4]; 

 mat b=[1,2; 2,3; 2,4]; 

} 

 

int matrixMultiplication(&matA, &matB, &result) 

{ 

 int ma, na, mb, nb; 

 dim(&matA, &ma, &na); //dim() is a standard library function that finds 

the dimensions of a given matrix 

 dim(&matB, &mb, &nb); 

 if (na != mb) 

  return -1; 

 

 //To load the work to GPU is somewhat time consuming, comparing to its 

actual processing time. So if the dimensions of the 2 matrices do not exceed the 

threshold, the multiplication will be calculated on CPU, otherwise the work will be 

assigned to GPU 

 if (ma > THRESHOLD  || na > THRESHOLD || nb > THRESHOLD) 

  *result = matA *. matB; 

 else 

  *result = matA * matB; 

 return 0; 

} 

 


