A Language for Geometry

--COMS 4115 Project Proposal

Mengqi Zhang (mz2369)
Shiyao Zhu (sz2395)
Ainur Rysbekova (ar3005)
Qiang Deng (qd2114)
Qingye Jiang (qj2116)

Description:

Our Language is actually a programming language for geometry calculation. With our Language, a user can calculate certain attributes of a geometry figure and relationship between several figures in a convenient way, also the user can verify his/her speculations on geometry rules and witness how the other attributes will change as certain conditions vary.

Purpose:

This Language is supposed to be used by students who are studying geometry. Students may sometimes find it is abstract to predict attributes of a concrete geometry figure and it is even more difficult to make clear the relationship between several figures. In order to help users have a better idea of geometry, we propose this "A Language for Geometry (ALG)" language and make the study for geometry more enjoyable!

Features:

- ALG language focuses mostly on geometry and makes the study of geometry easier.
- The Language will judge whether a value for a certain geometry type is valid or not (e.g. To judge whether the user's input of points of a certain polygon can compose a valid geometry figure or not)
- The same operator could be used by many data types (e.g. The compiler will handle differently with a certain operator when the operands of it differ)
- The same functions could be used by various input arguments (e.g. The compiler will handle differently with a function when the arguments of it differ)

A Representative Program

```
Test()
{
Polygon T={{0,0},{1,0},{0.5,1}};
//Three points for Polygon T makes T a triangle
!!Test Triangles//comment
If(A= = B)
{
    Print("Triangle A and B are congruent");
}
```

```
Else if(A~=B)
{
    Print("Triangle A and B are similar");
}
```

!!Test operator ${ }^{\wedge}$
Ellipse C1 $=\{\{0,0\},\{2,0\}, 1,3\}, \mathrm{C} 2=\{\{1,0\},\{3,0\}, 1,3\}$;
Line $\mathrm{L}=\mathrm{C} 1^{\wedge} \mathrm{C} 2 ; / / \mathrm{L}$ is the tangent of C 1 and C 2 , if C 1 and C 2 are not tangential to each other, L=nop
Line L1,L2;
Point $\mathrm{P}=\mathrm{L} 1 \wedge \mathrm{~L} 2 ; / / \mathrm{P}$ is the intersection point of L 1 and L 2
!!Test built-in functions
A(A);//Area
P(B);//Perimeter
!!To find out how a triangle's area will changed with the variation of its perimeters Polygon A[3];
i from 3 to 1
$\{\mathrm{A}[\mathrm{i}]=\{\{0,0\},\{\mathrm{i}, 0\},\{0, \mathrm{i}\}\}$;
Print(S(A[i]));
\}
\}

Syntax

Data Type

Data Type	Format of Value Examples
Point	$\{0,0\}$
Line	$\{\{0,0\},\{1,1\}\} / /$ line segment
Polygon	$\{\{0,0\},\{1,2\},\{4,6\} \cdots \cdots\}$ $/ /$ points correspond to vertexes
Ellipse	$\{\{-2,0\},\{2,0\}, 1,3\}$
Array	$\{\mathrm{A}, \mathrm{A}, \mathrm{A} \cdots \cdots\}$ //A represents a certain data type
Boolean	True or false

Note: All the numbers are treated as float type.

Operator

Operator	Example
$==\quad!=$	Judge whether two figures are the same (without considering the location)
$\sim=$	Judge whether twoPolygons are similar
\wedge	Calculate the intersecting point of two lines or tangent line of two ellipses/circles
=	Assignment operator
//	Judge whether two lines are parallel
+-	Addition and subtraction
*/	Compare areas of two figures of the same type
$\ll \gg$	Compare perimeters of two figures of the same type
$\ll \gg$	

Built-In Function

Operator	Example
S()	Calculate the area of a figure
P()	Calculate the Perimeter of a figure
GC()	Calculate the Center of Gravity of the figure
$\operatorname{Print}()$	Output the result

