
aML

Language Reference Manual

Sriramkumar Balasubramanian (sb3457)
Evan Drewry (ewd2106)
Timothy Giel (tkg2104)
Nikhil Helferty (nh2407)

October 31, 2012

1

Contents

1 Introduction 4

2 Lexical Conventions 4
2.1 Comments . 4
2.2 Identi�ers . 4
2.3 Keywords . 4
2.4 Literals . 5

2.4.1 Integer Literals . 5
2.4.2 Boolean Literals . 5
2.4.3 Null . 5
2.4.4 List Literals . 5

2.5 Separators . 5

3 Syntax Notation 5

4 Identi�er interpretation 6

5 Expressions 6
5.1 Primary Expressions . 6
5.2 Operators . 7

5.2.1 Arithmetic Operators . 7
5.2.2 Relational Operators . 7
5.2.3 Boolean Operators . 8
5.2.4 Assignment Operators . 9
5.2.5 Associative Operator . 9

6 Declarations 9
6.1 Variable Declarations . 9
6.2 Variable Initialization . 10
6.3 Function Declaration . 10

7 Statements 11
7.1 Expression statement . 11
7.2 Compound statements . 11
7.3 Conditional statements . 11
7.4 Return statement . 12

8 Scope rules 12

9 Preprocessor directives 12

10 Implicit identi�ers and functions 13
10.1 Variables . 13
10.2 Functions . 13

2

11 Types revisited 14
11.1 List<datatype> . 14
11.2 Cell . 14

11.2.1 Neighborhood functions 14
11.2.2 Cell functions . 15

12 Syntax summary 15
12.1 Expressions . 15
12.2 Statements . 18
12.3 Program De�nition . 18

3

1 Introduction

This manual describes the aML language which is used for manipulating mazes
and is used to provide instructions to a bot traversing the maze.
The manual provides a reliable guide to using the language. While it is not the
de�nitive standard, it is meant to be a good interpretation of how to use the lan-
guage. This manual follows the general outline of the reference manual referred
to in �The C Programming Language�, but is organized slightly di�erently with
de�nitions speci�c to aML. The grammar in this manual is the standard for this
language.

2 Lexical Conventions

A program consists of a single translation unit stored as a �le. There are �ve
classes of tokens: identi�ers, keywords, constants, operators, and other
separators. White space (blanks, tabs, newlines, form feeds, etc.) and comments
are ignored except as they separate tokens. Some white space is required to
separate adjacent identi�ers, keywords, and constants.

2.1 Comments

The characters // introduces a single line comment. The rest of the line is
commented in this case. This di�ers from a multi-line comment which is enclosed
by the /* and */ characters. Multi-line comments do not nest.

2.2 Identi�ers

An identi�er is a sequence of letters and digits, beginning with a letter and
can be of any length. The case of the letters is relevant in this case. No other
characters can form identi�ers.
eg. abcd, Abcd, A123,abc1

2.3 Keywords

The following identi�ers are reserved for use as keywords, and may not be used
otherwise:-

if return display remove left hasleft Integer
then main print add right hasright Boolean
else void source head up hastop List
load function visited next down hasbottom Cell

random exit isTarget isEmpty CPos
True null NOT AND
False OR

This language consists of many implicit variables and functions increasing the
size of the reserved words list.

4

2.4 Literals

There are di�erent kinds of literals (or constants) in aML as listed below:-

2.4.1 Integer Literals

An integer literal is taken to be decimal, and is of data type Integer. It may
consist only of a sequence of digits 0-9.
eg. 0,1,22,-5

2.4.2 Boolean Literals

A boolean literal is either True or False, and is of data type Boolean.

2.4.3 Null

The null literal has no data type and is simply the word null. This is linked
to the Cell and List<datatype> datatypes which need to be initialized to some
value after declaration.

2.4.4 List Literals

The list literal can include either the Integer, Boolean, Cell or List<datatype>
types (cascaded lists).
eg. <[1]>,<[1,2,3]>,<[[1,2,3],[4,5]>,<[True, False, True]>
.
As can be seen above the List literals consist of the form List<Integer>, List<List<....<List<Integer>�>...>�>,
List<Boolean> or List<List ... <List <Boolean>�> ... >�>. Details on List<datatype>
and Cell datatypes are provided in section 10.

2.5 Separators

The semi-colon ; and the pair of braces { } , the < > and [], act as separators
of the tokens. They are meant to reduce ambiguity and con�icts during the
parsing phase. The semi-colon is added at the end of every statement to signify
the end of the logical statement. The { } are used to collect groups of statements
into a single compound statement block. The < > and [] are used to instantiate
the List<datatype> variables.

3 Syntax Notation

In all of the syntactic notation used in this manual, the non-terminal symbols
are denoted in italics, and literal words and characters in bold. Alternative
symbols are listed on separate lines. An optional terminal or non-terminal
symbol is indicated by subscripting it with 'opt'.
eg. expressionopt denotes an optional expression

5

4 Identi�er interpretation

aML interprets the identi�er based on it's type. Each identi�er has a storage
associated with it where a certain value is stored. The type of the identi�er
determines the meaning of the values located in the storage of the identi�er. In
aML each identi�er's storage exists as long as the block enclosing the identi�er
is being executed.
aML supports a 3 fundamental types:-

• Integer - Objects declared as Integers use 64 bits for storage and are signed.
They are primarily used for arithmetic operations.

• Boolean - Objects declared as Booleans act as binary variables and can
either take the value True or False.

• Cell - A cell object stores the attributes of a cell of a maze.

There is one derived type List<type> which is used for storing lists of objects
of the fundamental types as well as the List type. By this recursive de�nition,
aML allows cascading of these lists.
More details on the Cell and List<type> datatypes is provided in section 11.

The complete data type de�nitions present in aML are as follows:-

datatype:-
Integer
Boolean
Cell
List<datatype>

Note:- Each datatype is di�erent from each other and no two di�erent datatypes
can be combined together in a valid operation de�ned in aML.

5 Expressions

The complete syntax is provided in section 12. This section introduces the
de�nition of the expression types which are the basic building blocks of any
language.

5.1 Primary Expressions

Primary expressions are identi�ers, constants, or expressions in parentheses.
They also include the variable CPos which will be explained in section 11.

primary-expression:-
identi�er

6

literal
(expression)
(CPos)
null

An identi�er is a primary expression provided it's type is speci�ed in it's decla-
ration.
A literal is a primary expression. The type of the literal may include Integer,
Boolean or List<type>. The syntax notation for literal including the de�nition
of list literals is given in detail in section 12.
A paranthesized expression is a primary expression whose type and value are
equal to those of the non-paranthesized one.
CPos refers to the current position of the bot in the maze. It is a tracking
variable and is used primarily to assign values to identi�ers of Cell datatypes.
null is a constant which is assigned by default to identi�ers of the List<type>
and Cell datatypes. It signi�es no storage allotted to the identi�er yet.

5.2 Operators

5.2.1 Arithmetic Operators

There are six arithmetic operators:{ +, -, *, /, %, ^}. The operands of these
operators must be of Integer data type. The result will also be of type Integer.

arithmetic-expression:-
expression + expression
expression - expression
expression * expression
expression / expression
expression % expression
expression ^ expression

Operator Semantic Comments

+ addition
- subtraction
* multiplication
/ division Integer division only. Divide by zero => error
% modulo
^ exponentiation

5.2.2 Relational Operators

The relational operators all return values of Boolean type (either True or False).
There are six relational operators: {==, ~=, >, <, >=, <=}. The operators
all yield False if the speci�ed relation is false and True if it is true.

7

relational-expression:-
expression == expression
expression ~= expression
expression > expression
expression < expression
expression >= expression
expression <= expression

Operator Semantic

== equals
~= not equals
> greater
< lesser
>= greater than equals
<= less than equals

The == operator compares the value of left expression to the right expres-
sion and evaluates to True if they are equal, False otherwise. It is vice-versa
for the ~= operator. The > operator evaluates to true if the left expression is
greater than the right expression, false otherwise. The < operator behaves in
the opposite manner. The >= and <= operators check for equality condition
as well.
For the == and ~= operators, the expressions involved must be of the same
datatype. The other operators are de�ned only for the Integer datatype where
comparison is meaningful.

5.2.3 Boolean Operators

The boolean operators all return values of Boolean type (either True or False).
There are three boolean operators: logical-NOT, logical-AND and logical-OR,
denoted by NOT, AND, and OR, respectively.

not-expression:-
NOT expression

and-expression:-
expression AND expression

or-expression:-
expression OR expression

The operand(s) to NOT, AND and OR have to evaluate to True or False, or
in other words, they must either be Boolean variables or relational expressions.
NOT negates the operand, AND returns True if all operands evaluate to true,
False otherwise. OR returns True if at least one of the operands evaluate to
true, False otherwise.

8

5.2.4 Assignment Operators

There is a single assignment operator in aML, :=, which does simple assign-
ment. It is a binary operator which assigns the value of the right operand to
the storage of the left operand.

assignment-expression:-
identi�er := expression

The type of the expression must be identical to the type of 'lvalue'.

5.2.5 Associative Operator

The . operator is used for function calls on variables represented by identi�ers.
The structure of statements involving the operator is shown in section12.

6 Declarations

Declarations specify the interpretation given to each identi�er i.e. the type
of data it can point to and the associated operations that go along with it.
Declarations can be divided into variable and function declarations. Variable
declarations refers to the declaration of identi�ers whose type belongs to one
of the datatypes mentioned and is di�erent from function declarations both
syntactically and semantically.

6.1 Variable Declarations

The rule representing the declaration of identi�ers is listed in the complete Syn-
tax summary in section 12. The declaration of identi�ers is similar to many
strongly typed languages where thet type associated with the identi�er must be
speci�ed during declaration.

declaration-expression:-
datatype declarator

declarator:-
decl-expression init-expressionopt

decl-expression:-
identi�er
expression

Examples of some declarations are given below:-

• Integer x;

• Boolean �ag;

9

• Cell node;

• List<Integer> myList;

6.2 Variable Initialization

When an identi�er is declared, an initial value may also be speci�ed. Else the
identi�er can be initalized separately after it's declaration.

init-expression:-
:= rvalue-expression

rvalue-expression:-
expression
identi�er
literal

A few examples of variable initializations are provided below;

• x := 10;

• �ag := false;

• node := null;

• myList.head() := 1;

The exact rule is provided in the Syntax summary in section 12. Initialization
can also be combined with declaration in a single step. This is also shown in
�nal section.

6.3 Function Declaration

Functions can either return a certain datatype or be void functions (return no
value). A function header is speci�ed with the function keyword and an iden-
ti�er along with an optional argument list and return type. Functions can be
�used� by function calls. But for a function to be called, it must be declared in
the program.

function_declaration:-
function_header { body }

function_header:-
function identi�er (args_listopt) : return_type

args_list:-
datatype identi�er
datatype identi�er , args_list

10

body:-
compound-statement

Function calls are handled in section 12. Compound statements are described
in detail in the section below.

7 Statements

Statements are usually executed in sequence, with the exception of conditional
statements. They are the next level of basic building blocks after expressions.
Each statement ends with a semi-colon at the end which denotes the end of the
logical statement. The physical statement which is equivalent to one line in the
editor may be comprised of one or more logical statements.
One notable feature in aML is the lack of looping constructs. Iterations are
achieved by tail recursion of functions. The function de�nition shown above is
represented in the bigger picture in section 12.3. The following de�nition gives
an idea about the components of a statement. The entire de�nition integrated
with other de�nitions is present in section 12.

7.1 Expression statement

expression-statement:-
expression;

Expression statement consist of assignments and function calls.

7.2 Compound statements

Compound statements are provided in the form:-

compound-statement:-
{ statement-list }

statement-list:-
statement
statement statement-list

Compound statements are generally used to form the body of code to execute
in conditional statements, as well as the body of function de�nitions.

7.3 Conditional statements

Conditional statements have the general form:-

conditional-statement:-

11

if (expression) then {compound-statement};
if (expression) then {compound-statement}else {compound statement}

The else branch is optional. The program will evaluate the expression in paren-
theses, and if it evaluates to the Boolean value true then it executes the corre-
sponding compound-statement, and subsequently continues on to the statement
following the conditional statement. If the expression does not evaluate to true,
then the compound-statement following the else branch is executed (if it ex-
ists). Branches are evaluated in order, such that only the �rst branch with an
expression that evaluates to true will be executed, and all others skipped.

7.4 Return statement

Return statement Return statements take the form:-
return-statement:-

return expression;
The expression should evaluate to a value of the return type of the function
being de�ned.

8 Scope rules

Programs are not multi-�le in AML, so external scope is not a worry. The lexical
scope of identifers is of relevance however. In brief, subsequent to declaration a
given identi�er is valid for the rest of the function inside which it was declared.
Re-declarations using an already declared identi�er will overwrite the reference
to the �rst identi�er. No identi�ers can be declared outside functions.
While user-de�ned variables cannot enjoy a global scope, the implicit variables
on the other-hand can do so. More information on implicit variables is provided
in 10.

9 Preprocessor directives

Preprocessor directives must precede any code in the program. One possible
preprocessor directive takes the form: #load �lename. This instruction en-
sures that the maze to be navigated is to be generated from the �le with name
�lename. (The �le must be placed in the 'maps' directory). The acceptable
�le format is pre-de�ned and is independent of the language used.
Another possible directive is: #load-random. This leads to the maze is to be
randomly generated each time the program runs.
The two directives are mutually exclusive. In the event of multiple directives,
the compiler will show an error.

12

10 Implicit identi�ers and functions

aML consists of many implicit identifers or variables and functions. By implicit,
it follows that these identi�ers can be used without prior declaration as is the
case for any user de�ned identi�er or function. However they cannot be modi�ed
by the user. Their usage is mostly restricted to boolean queries and assigning
their values to user-de�ned identi�ers. The variables and functions along with
their meaing are provided below:-

10.1 Variables

The implicit variables are as follows.

• CPos - denotes the current position of the bot on the maze. Variables of
type Cell can be instantiated by referencing CPos.

• Visited - It is a dictionary like structure which maintains the 'visited'
status of each cell of the maze. It is used especially for backtracking
algorithms. It can never be used. The Visit() function provided accesses
this data structure inherently.

10.2 Functions

The implicit functions mainly deal with the movement and functionalities of the
bot.

• move_U() - moves the bot one cell up from the current position, returns
true if it succeeds, false otherwise

• move_D() - moves the bot one cell down from the current position, returns
true if it succeeds, false otherwise

• move_L() - moves the bot one cell left of the current position, returns
true if it succeeds, false otherwise

• move_R() - moves the bot one cell right of the current position, returns
true if it succeeds, false otherwise

• revert() - goes back to the previous position from the current position,
returns true if successful, false if at the start

• Visit(id) - checks if the cell refered to by id has been visited or not

13

11 Types revisited

This section discusses the List<datatype> datatype and the functions associ-
ated with it. These two datatypes are in a sense less primitive than the Integer
and Boolean datatypes. They come along with certain functions which can be
applied to variables belonging to these datatypes. These functions are invoked
or called using the . associative operator on the identi�er. The rule regarding
the functions is shown in the �nal section.

11.1 List<datatype>

The List<datatype> from it's de�nition in section6.1 allows cascaded lists. This
is especially useful for adjacency list representation of graphs from mazes.
The functions associated with the datatype allow the manipulation and traver-
sal of the lists.

• add() - adds an elements to the end of the current list
eg. mylist.add(2);

• remove() - removes and returns the �rst element of the current list
eg. mylist.remove();

• isEmpty() - returns true if the current list has no elements, false otherwise.
eg. mylist.isEmpty()

• head() - returns the �rst element of the current list
eg. mylist.head();

• next() - returns the tail of the current list. The element next to the �rst
element of the current list is the head of the tail.
eg. mylist.next();

11.2 Cell

The Cell datatype is unique in the sense that it cannot be set a user-de�ned
value. At any point of time, a variable of Cell dataype can be assigned only to
the CPos value. It can however be stored in a variable which will re�ect that
CPos value then, even if accessed at a later time.
Certain functions are provided for this datatype which makes querying the cell's
content as well as it's neighborhood easier.

11.2.1 Neighborhood functions

• left() - returns the left cell of the current cell if it exists and the current
cell has been visited

• hasleft() - returns True if there is a cell to the left of the current cell

14

• right() - returns the right cell of the current cell if it exists and the current
cell has been visited

• hasright() - returns True if there is a cell to the right of the current cell

• up() - returns the cell located upwards of the current cell if it exists and
the current cell has been visited

• hasTop() - returns True if there is a cell to the top of the current cell

• down() - returns the cell located downwards of the current cell if it exists
and the current cell has been visited

• hasbottom() - returns True if there is a cell to the bottom of the current
cell

11.2.2 Cell functions

• isTarget() - returns true if the cell is a target as speci�ed in the maze

• Source() - returns true if the cell is the start point of the maze

• get_Loc() - returns the Integer ID of the cell

12 Syntax summary

The entire syntax is provided below. This section is intended for the logical un-
derstanding of the language structure rather than an exact copy of the language.

12.1 Expressions

The expression includes declaration statements as well.

expression:-
primary_expression
lval_expression
NOT expression
expression binop expression
functions

primary-expression:-
identi�er
literal
(expression)
(CPos)
null

15

literal:-
primitive_literal
<[list_literalopt]>

primitive_literal:-
integer_literal
boolean_literal

list_literal:-
sub_list
[list_literal]
list_literal,[sub_list]

sub_list:-
primitive_literal
primitive_literal,sub_list

lval_expression:-
declaration-expression
declarator

declaration-expression:-
datatype declarator

declarator:-
decl-expression init-expressionopt

decl-expression:-
identi�er
expression

init-expression:-
:= rvalue-expression

rvalue-expression:-
expression
identi�er
literal

datatype:-
Integer
Boolean
Cell
List<datatype>

binop:-

16

Operators Associativity

^ Right
/ * % Left
> < >= <= Left
== ~= Left
NOT Right
AND Left
OR Left
:= Right

The binop table shows the binary operators in the decreasing order of prece-
dence (top - bottom) along with their associativity which gives the fashion in
which they are grouped together.

functions:-
list_functions
cell_functions
maze_functions
lang_functions

list_functions:-
expression.add(expression)
expression.remove()
expression.isEmpty()
expression.head()
expression.next()

cell_functions:-
expression.left()
expression.right()
expression.up()
expression.down()
expression.hasleft()
expression.hasright()
expression.hastop()
expression.hasbottom()
expression.isTarget()

maze_functions:-
Visit(expression)
get_Loc(expression)
revert()

lang_functions:-
identi�er(actual_argsopt)

17

display()
print(expression)

actual_args:-
primary_expression
primary_expression, actual_args

12.2 Statements

Statements are logical sentences that can be formed by the language. A com-
pound statement is a group of statements occuring in a linear fashion one after
the other.
compound-statement:-

{statement-list}

statement-list:-
statement
statement statement-list

statement:-
expression;
return expression;
{ statement-list }
if (expression) statement;
if (expression) statement else statement
exit;

If the expression to 'if' does not evaluate to True or False, an error will be
thrown.

12.3 Program De�nition

This subsection describes the structure of the program and functions which
are the biggest building blocks in aML. Every aML must have one and only
one main function through which the control passes to the program. It must
also have exactly one pre-processor directive to load the maze. It can have an
arbitrary number of functions though. The program structure is de�ned below:-

program:-
empty_program
pre-process program
func-def program

18

empty-program:-

pre-process:-
#load-identi�er
#load-random

func-def:-
main():void {statement-list}
identi�er(formal-argsopt):return-type{statement-list}

formal-argsopt:-
datatype identi�er
datatype identi�er ,formal-args

return-type:-
datatype
void

19

