COLUMBIA UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

COMS W4115 PROGRAMMING LANGUAGES AND TRANSLATORS

MatCab: Matrix Manipulation
Language

Author:

Cheng Xiang (cx2142)
Yu Qiao (yq2145)
Ran Yu (yr2239)
Tianchen Yu (ty2275)

Professor:
Stephen A. Edwards

October 31, 2012

Contents
1 Introduction

2 Lexical Conventions

2.1 Comments
2.2 Identifiers
23 Keywords
2.4 Constants e e
2.4.1 Numeric Constants
2.4.2 String Literal Constants
2.4.3 Vector Constants
2.4.4 Matrix Constants

3 Syntax Notations

4 Types
4.1 Atomic Types
4.2 Compound Types
5 Expressions
5.1 Primary Expressions oL
5.2 Unary operators e
5.3 Binary operators L
5.4 Other operators
5.5 I/O Expressions o

6 Declarations

7 Statements

8 Program Definition

9 How Scope Rules Work in MatCab

10 Example

1 Introduction

The MatCab is a programming language that simplifies and accelerates matrix ma-
nipulations. It is a C-style language that particularly aims at easier and faster ma-
trix computing for programmers. It provides intuitive matrix related operators and
will take the advantage of GPU to speed up the program run-time performance.
This manual is inspired by the C reference manual [Dennis M. Ritchie, 1973]. and
CLAM reference manual [Jeremy, Robert, Kevin and Yongxu, 2011].

2 Lexical Conventions

There are six kinds of tokens: comments, identifiers, keywords, constants, strings,
and operators. Comments, blanks, tabs, tabs, new lines and are ignored. The
token is recognized until the parser sees a separator.

2.1 Comments

A line that begins with a pound sign (#) is comments. The compiler will ignore
the comments. Only single-line comment is supported.

#This is a line of comment.

2.2 Identifiers

An identifier is used to distinguish one variable or function to another. It is
sequence of letters and numbers, and it must start with a letter. The identifiers
are case-sensitive, i.e. “move” and “Move” are different variables.

Identifier — [a-zA-Z[([a-2A-Z] | [0-9])*

2.3 Keywords

A keyword is reserved and cannot be used as an identifier.
Keyword — int ! char ‘ float ‘ rowvec ‘ colvec ‘ matriz | return ‘ break | continue

‘ 2f| else ‘ for‘ while | entry ‘ true ‘ false ‘ import ‘ export

2.4 Constants

There are four kinds of constants in Matcab: numeric constants, string literal
constants, vector constants, and matrix constants.

2.4.1 Numeric Constants

A numeric constant can be an integer constant, a float constant. The integer is a
series of numbers. The float constant contains an integer part, a decimal point, a
fraction part and a character ‘f’.

Numeric Constant — Integer Constant ’ Float Constant
Integer Constant — [0-9]+
Float Constant — [0-9]+ . [0-9]+ ‘f’

2.4.2 String Literal Constants

A string literal constant is anything inside a pair of double quote marks.

String Literal — “(any character)”

2.4.3 Vector Constants

A vector constant can be a row vector or a column vector. A pair of square
brackets demarcates them both. A row vector is ended with a character ‘raAZ
while a column vector is ended with a character ‘cAAZ. For example, [3,4,5]r is a
row vector.

Vector Constant — Row Vector Constant ‘ Column Vector Constant Row Vector
Constant — open_ square_ bracket close square_ bracket ‘r’
open_ square_bracket (Numeric Constant ,)+ Numeric Constant
close_square_breacket ‘r’ Column Vector Constant — open_ square_ bracket
close_square_bracket ‘c’ | open_ square_bracket (Numeric Constant ,)+
Numeric Constant close_square_breacket ‘c’

2.4.4 Matrix Constants

A matrix constant begins with an open square bracket and ends with a close
square bracket, just like the vector constant. It can be filled with several row
vectors, column vectors, or numbers. For example, [(1,2,3);(4,5,6);(7,8,9)] gives
a 3*3 matrix with values specified; [c1;¢2;¢3] gives a matrix with column vector
specified; [r1;r2;r3] gives a matrix with row vector specified.

Matriz Constants — open_ square_ bracket (comma separated numbers)*
close_square_ bracket

3 Syntax Notations

Because MatCab supports both number and matrix operations, we use uppercase
letter and lowercase letter to distinguish them in the following discussion - Any
uppercase character denotes a matrix, and any lowercase denotes a number.

4 Types

There are two types can either be an atomic type or a compound type.

4.1 Atomic Types

As a support or a complement language to other general programming languages,
like C language, which focuses on matrix manipulation, MatCab supports a subset
of arithmetic types defined in C programming language.

char
nt

float

4.2 Compound Types

MatCab supports compound types built upon atomic types.

TOWVEC
colvec
matrix

Users cannot define new data types in MatCab.

5 Expressions

Here the definition of MatCab expressions follows the steps in C Language Refer-
ence Manual defining expressions.

5.1 Primary Expressions

An identifier, a constant, a string (an array of chars), an expression enclosed in
parentheses, a primary expression followed by an expression in square brackets or
a function call (a primary expression followed by parentheses containing possibly
empty, as well as possibly comma separated list of expressions) could be a primary
expression.

Identifier
Constant
String
(expression)
Primary-expression | expression |
Primary-expression (expression-list)

5.2 Unary operators

There are several kinds of unary operators in MatCab:

-+ expression
- expression
I expression
expression ~
expression .
expression ’
| expression |
tr(expression)

I operator will make the entire expression of value 0, if the operand is of value
other than 0; and will be of value 1 if the operand is of value 0.

" and ~. operator performe matrix inverse calculation. As the convention of
MatCab, if ~. operator is chosen by the programmer, the calculation will use GPU
to accelerate.

‘ operator gives the transpose of the original expression.

| A | operator calculates the determinant of the given expression.

tr() operator calculates the trace of the given expression.

5.3 Binary operators

expression -+ expression
expression - expression
expression * expression
expression / expression
expression
expression *. expression
expression ** expression
expression == expression
expression || expression
expression && expression

*. operator will performe matrix multiplication using GPU acceleration. ==, ||
and && operators are used in flow control.

5.4 Other operators

Besides unary and binary operators, MatCab supports some useful matrix calcu-
lations using such operators:

submat(expression, expression, expression, expression, expression)
sum(expression, expression, expression)

submat operator gives out a submatrix of the original expression according to the
parameters assigned to. sum operator gives the sum of the elements in a row or a
column of a given expression.

More matrix operators are to be added along the development of MatCab.

5.5 1/0 Expressions

MatCab take in the input and give out the output using I/O expressions defined
within the language itself.

Matrix-identifier = Import (filename)

Export (filename, matrix-identifier)

6 Declarations

Declarations are used to associate an identifier and its data type. It tells the
interpreter how to treat each identifier properly. All variables must be firstly
explicitly declared before it can be used in a statement. Declarations could appear
at any place of a MatCab program. It has the form:
declaration:
Type-specifier declarator-list
declarator-list:
First-declarator
First-declarator, declarator-list
first-declarator:
Declarator initializer
declarator:
Identifier

Declarator ()

Declarator | constant-expression |
Initializer:

Constant

constant-expression-list

7 Statements

Statements end with semicolons in MatCab, just like what it is like in C language.
Most of the time, they are expression statements. If needed, statements can be
grouped together using curly bracket pair. For flow control purpose, if statements,
while statements, for statements are supported in MatCab. Their grammar rules
are exactly the same as C language.

8 Program Definition

A MatCab program consists of several definition statements and exactly one entry
point. The entry point itself is a function declaration with a specified form:
Program — EntryPoint FunctionDecl*
EntryPoint — int entry () Statement
FunctionDecl — Type id FormallList
FormalList — Type id FormalRest*
FormalRest —, Type id
Type — AtomicType
— CompoundType
AtomicType — char
— int
— float
CompoundType — rowec<AtomicType>
— columnvec< AtomicType>
— matrix<<AtomicType>
Statement — VarDecl*
— Statement™
— if (Exp) Statement else Statement
— while (Exp) Statement
— for (Exp ; Exp ; Exp) Statement*
—id = Exp ;
—id | Exp |= Exp ;
— id = import (id);

— export (id);
Exp — (Exp)

— | Exp |

— Exp BInOp Exp

— LhsUnaryOp Exp

— Exp RhsUnaryOp

— | Exp |

S Lt (exp) |

— submat (Exp+)

— sum (Exp+)

— Constant

— true

— false

LhsUnaryOp — +
— -
— !
RhsUnaryOp — ~
-
N
VarDecl — Type id

9 How Scope Rules Work in MatCab

Identifiers are only valid in the scope that enclosed by the nearest curly bracket
pair. If an identifier is declared out of any curly bracket pairs, then it is a global
variable that accessible from anywhere of the program.

10 Example

// Sample program Matrix Multiplication
int entry() {

10

15

20

int THRES = 100;
matrix A = import(‘‘matrixl.txt’’)f;
matrix B = import(‘‘matrix2.txt’’);

int ma, mb, na, nb;

ma = rows_count (A);
mb = rows_count (B);
na = columns_count (A);
nb = columns_count (B);
if (na == mb)
{
matrix C = new matrix(ma, nb);
If (ma > THRES || na > THRES || nb > THRES)
C = A . B;
else
C = A x B;
export (‘‘result.txt’’, C);
}
}
References

[Dennis M. Ritchie, 1973] Dennis M. Ritchie (1973). C Reference Manual. Bell
Telephone Laboratories

[Jeremy, Robert, Kevin and Yongxu, 2011] Jeremy Andrus and Robert Martin
and Kevin Sun and Yongxu Zhang (2011). CLAM: The Concise Linear Alge-
bra Manipulation Language. Columbia University

