
Control Flow

Stephen A. Edwards

Columbia University

Fall 2012

Control Flow

“Time is Nature’s way of preventing everything from happening at
once.”

Scott identifies seven manifestations of this:

1. Sequencing foo(); bar();

2. Selection if (a) foo();

3. Iteration while (i<10) foo(i);

4. Procedures foo(10,20);

5. Recursion foo(int i) { foo(i-1); }

6. Concurrency foo() || bar()

7. Nondeterminism do a -> foo(); [] b -> bar();

Ordering Within Expressions

What code does a compiler generate for

a = b + c + d;

Most likely something like

tmp = b + c;
a = tmp + d;

(Assumes left-to-right evaluation of expressions.)

Order of Evaluation
Why would you care?

Expression evaluation can have side-effects.

Floating-point numbers don’t behave like numbers.

Side-effects

int x = 0;

int foo() {
x += 5;
return x;

}

int bar() {
int a = foo() + x + foo();
return a;

}

What does bar() return?

GCC returned 25.

Sun’s C compiler returned 20.

C says expression evaluation order is implementation-dependent.

Side-effects

int x = 0;

int foo() {
x += 5;
return x;

}

int bar() {
int a = foo() + x + foo();
return a;

}

What does bar() return?

GCC returned 25.

Sun’s C compiler returned 20.

C says expression evaluation order is implementation-dependent.

Side-effects

Java prescribes left-to-right evaluation.

class Foo {

static int x;

static int foo() {
x += 5;
return x;

}

public static void main(String args[]) {
int a = foo() + x + foo();
System.out.println(a);

}

}

Always prints 20.

Number Behavior

Basic number axioms:

a +x = a if and only if x = 0 Additive identity

(a +b)+ c = a + (b + c) Associative

a(b + c) = ab +ac Distributive

Misbehaving Floating-Point Numbers

1e20 + 1e-20 = 1e20

1e-20¿ 1e20

(1 + 9e-7) + 9e-7 6= 1 + (9e-7 + 9e-7)

9e-7¿ 1, so it is discarded, however, 1.8e-6 is large enough

1.00001(1.000001−1) 6= 1.00001 ·1.000001−1.00001 ·1

1.00001 ·1.000001 = 1.00001100001 requires too much intermediate
precision.

What’s Going On?

Floating-point numbers are represented using an
exponent/significand format:

1 10000001︸ ︷︷ ︸
8-bit exponent

01100000000000000000000︸ ︷︷ ︸
23-bit significand

= −1.0112 ×2129−127 =−1.375×4 =−5.5.

What to remember:

1363.4568︸ ︷︷ ︸
represented

46353963456293︸ ︷︷ ︸
rounded

What’s Going On?

Results are often rounded:

1.00001000000
×1.00000100000

1.00001100001︸ ︷︷ ︸
rounded

When b ≈−c, b + c is small, so ab +ac 6= a(b + c) because precision
is lost when ab is calculated.

Moral: Be aware of floating-point number properties when writing
complex expressions.

Short-Circuit Evaluation

When you write

if (disaster_could_happen)
avoid_it();

else
cause_a_disaster();

cause_a_disaster() is not called when
disaster_could_happen is true.

The if statement evaluates its bodies lazily: only when necessary.

The section operator ? : does this, too.

cost = disaster_possible ? avoid_it() : cause_it();

Logical Operators

In Java and C, Boolean logical operators
“short-circuit” to provide this facility:

if (disaster_possible || case_it()) { ... }

cause_it() only called if disaster_possible is false.

The && operator does the same thing.

Useful when a later test could cause an error:

int a[10];

if (i => 0 && i < 10 && a[i] == 0) { ... }

Unstructured Control-Flow

Assembly languages usually provide three types of instructions:

Pass control to next instruction:

add, sub, mov, cmp

Pass control to another instruction:

jmp rts

Conditionally pass control next or elsewhere:

beq bne blt

Unstructured Control-Flow

BEQ A

B:

JMP C
A:

BEQ D

C:

BEQ B

D:

BNE B
RTS

Structured Control-Flow

The “object-oriented languages” of the 1960s and 70s.

Structured programming replaces the evil goto with structured
(nested) constructs such as

for

while

break

return

continue

do .. while

if .. then .. else

Gotos vs. Structured Programming

A typical use of a goto is building a loop. In BASIC:

10 PRINT I
20 I = I + 1
30 IF I < 10 GOTO 10

A cleaner version in C using structured control flow:

do {
printf("%d\n", i);
i = i + 1;

} while (i < 10)

An even better version

for (i = 0 ; i < 10 ; i++)
printf("%d\n", i);

Gotos vs. Structured Programming

Break and continue leave loops prematurely:

for (i = 0 ; i < 10 ; i++) {
if (i == 5) continue;
if (i == 8) break;
printf("%d\n", i);

}

i = 0;
Again:
if (!(i < 10)) goto Break;
if (i == 5) goto Continue;
if (i == 8) goto Break;
printf("%d\n", i);

Continue: i++; goto Again;
Break:

Escaping from Loops

Java allows you to escape from labeled loops:

a: for (int i = 0 ; i < 10 ; i++)
for (int j = 0 ; j < 10 ; j++) {

System.out.println(i + "," + j);
if (i == 2 && j == 8) continue a;
if (i == 8 && j == 4) break a;

}

Gotos vs. Structured Programming

Pascal has no “return” statement for escaping from
functions/procedures early, so goto was necessary:

procedure consume_line(var line : string);
begin
if line[i] = ’%’ then goto 100;
(* *)

100:
end

In C and many others, return does this for you:

void consume_line(char *line) {
if (line[0] == ’%’) return;

}

Loops

A modern processor can execute
something like 1 billion instructions/second.

How many instructions are there in a
typical program? Perhaps a million.

Why do programs take more than 1ms to run?

Answer: loops

This insight is critical for optimization: only bother optimizing the
loops since everything else is of vanishing importance.

Enumeration-Controlled Loops in FORTRAN

do 10 i = 1, 10, 2
...

10: continue

Executes body of the loop with i=1, 3, 5, . . . , 9

Tricky things:

What happens if the body changes the value of i?

What happens if gotos jump into or out of the loop?

What is the value of i upon exit?

What happens if the upper bound is less than the lower one?

Changing Loop Indices

Most languages prohibit changing the index within a loop.

(Algol 68, Pascal, Ada, FORTRAN 77 and 90, Modula-3)

But C, C++, and Java allow it.

Why would a language bother to restrict this?

Empty Bounds

In FORTRAN, the body of this loop is executed once:

do 10 i = 10, 1, 1
...

10: continue

“for i = 10 to 1 by 1”

Test is done after the body.

Modern languages place the test before the loop.

Does the right thing when the bounds are empty.

Slightly less efficient (one extra test).

Scope of Loop Index

What happens to the loop index when the loop terminates?

Index is undefined: FORTRAN IV, Pascal.

Index is its last value: FORTRAN 77, Algol 60

Index is just a variable: C, C++, Java

Tricky when iterating over subranges. What’s next?

var c : ’a’..’z’;
for c := ’a’ to ’z’ do begin
...

end; (* what’s c? *)

Scope of Loop Index

Originally in C++, a locally-defined index variable’s scope extended
beyond the loop:

for (int i = 0 ; i < 10 ; i++) { ... }
a = a + i; // Was OK: i = 10 here

But this is awkward:

for (int i = 0 ; i < 10 ; i++) { ... }
...
for (int i = 0 ; i < 10 ; i++) // Error: i redeclared

Scope of Loop Index

C++ and Java now restrict the scope to the loop body:

for (int i = 0 ; i < 10 ; i++) {
int a = i; // OK

}
...
int b = i; // Error: i undefined
...
for (int i = 0 ; i < 10 ; i++) { // OK
}

Rather annoying: broke many old C++ programs.

Better for new code.

Algol’s Combination Loop

for → for id := for-list do stmt

for-list → enumerator (, enumerator)*

enumerator → expr
→ expr step expr until expr
→ expr while condition

Equivalent:

for i := 1, 3, 5, 7, 9 do ...
for i := 1 step 2 until 10 do ...
for i := 1, i+2 while i < 10 do ...

Language implicitly steps through enumerators (implicit variable).

Mid-test Loops

while true do begin
readln(line);
if all_blanks(line) then goto 100;
consume_line(line);

end;
100:

In Modula-2:

LOOP
line := ReadLine;

WHEN AllBlanks(line) EXIT;
ConsumeLine(line)

END;

Multi-way Branching

switch (s) {
case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;
}

switch (s) {
case 1: goto One;
case 2: goto Two;
case 3: goto Three;
case 4: goto Four;

}
goto Break;

One: one(); goto Break;
Two: two(); goto Break;
Three: three(); goto Break;
Four: four(); goto Break;
Break:

Switch sends control to one of the case labels. Break terminates the
statement. Really just a multi-way goto:

Implementing multi-way branches

switch (s) {
case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;
}

Obvious way:

if (s == 1) { one(); }
else if (s == 2) { two(); }
else if (s == 3) { three(); }
else if (s == 4) { four(); }

Reasonable, but we can sometimes do better.

Implementing multi-way branches

If the cases are dense, a branch table is more efficient:

switch (s) {
case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;
}

A branch table written using a GCC extension:

/* Array of addresses of labels */
static void *l[] = { &&L1, &&L2, &&L3, &&L4 };

if (s >= 1 && s <= 4)
goto *l[s-1];

goto Break;
L1: one(); goto Break;
L2: two(); goto Break;
L3: three(); goto Break;
L4: four(); goto Break;
Break:

Recursion and Iteration

To compute
10∑

i=0
f (i) in C,

the most obvious technique is iteration:

double total = 0;
for (i = 0 ; i <= 10 ; i++)
total += f(i);

But this can also be defined recursively

double sum(int i, double acc)
{
if (i <= 10)

return sum(i+1, acc + f(i));
else

return acc;
}

sum(0, 0.0);

Recursion and Iteration

To compute
10∑

i=0
f (i) in C,

the most obvious technique is iteration:

double total = 0;
for (i = 0 ; i <= 10 ; i++)
total += f(i);

But this can also be defined recursively

double sum(int i, double acc)
{
if (i <= 10)

return sum(i+1, acc + f(i));
else

return acc;
}

sum(0, 0.0);

Tail-Recursion and Iteration

int gcd(int a, int b) {
if (a==b) return a;
else if (a > b) return gcd(a-b,b);
else return gcd(a,b-a);

}

Notice: no computation follows any recursive calls.

Stack is not necessary: all variables “dead” after the call.

Local variable space can be reused. Trivial since the collection of
variables is the same.

Works in O’Caml, too

let rec gcd a b =
if a = b then a
else if a > b then gcd (a - b) b
else gcd a (b - a)

Tail-Recursion and Iteration

int gcd(int a, int b) {
if (a==b) return a;
else if (a > b) return gcd(a-b,b);
else return gcd(a,b-a);

}

Can be rewritten into:

int gcd(int a, int b) {
start:
if (a==b) return a;
else if (a > b) a = a-b; goto start;
else b = b-a; goto start;

}

Good compilers, especially those for functional languages, identify
and optimize tail recursive functions.

Less common for imperative languages, but gcc -O was able to
handle this example.

Applicative- and Normal-Order Evaluation
int p(int i) {

printf("%d ", i);
return i;

}

void q(int a, int b, int c)
{
int total = a;
printf("%d ", b);
total += c;

}

q(p(1), 2, p(3));

What does this print?

Applicative: arguments evaluated before function is called.

Result: 1 3 2

Normal: arguments evaluated when used.

Result: 1 2 3

Applicative- and Normal-Order Evaluation
int p(int i) {

printf("%d ", i);
return i;

}

void q(int a, int b, int c)
{
int total = a;
printf("%d ", b);
total += c;

}

q(p(1), 2, p(3));

What does this print?

Applicative: arguments evaluated before function is called.

Result: 1 3 2

Normal: arguments evaluated when used.

Result: 1 2 3

Applicative- vs. and Normal-Order

Most languages use applicative order.

Macro-like languages often use normal order.

#define p(x) (printf("%d ",x), x)

#define q(a,b,c) total = (a), \
printf("%d ", (b)), \
total += (c)

q(p(1), 2, p(3));

Prints 1 2 3.

Some functional languages also use normal order evaluation to
avoid doing work. “Lazy Evaluation”

Argument Order Evaluation

C does not define argument evaluation order:

int p(int i) {
printf("%d ", i);
return i;

}

int q(int a, int b, int c) {}

q(p(1), p(2), p(3));

Might print 1 2 3, 3 2 1, or something else.

This is an example of nondeterminism.

Nondeterminism

Nondeterminism is not the same as random:

Compiler usually chooses an order when generating code.

Optimization, exact expressions, or run-time values may affect
behavior.

Bottom line: don’t know what code will do, but often know set of
possibilities.

int p(int i) { printf("%d ", i); return i; }
int q(int a, int b, int c) {}
q(p(1), p(2), p(3));

Will not print 5 6 7. It will print one of

1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1

Nondeterminism

Nondeterminism lurks in most languages in one form or another.

Especially prevelant in concurrent languages.

Sometimes it’s convenient, though:

if a >= b -> max := a
[] b >= a -> max := b
fi

Nondeterministic (irrelevant) choice when a=b.

Often want to avoid it, however.

