
ENGI E1112 Computer Science Computer
Engineering Lab Report:

Developing A Fully Functional HP20b
Calculator

Jay Shim, SonYon Song

May 2012

Abstract
Embedded systems are often used for devices with specific functional

restraints. HP 20b calculators are such devices. In addition to the hardware
and mechanical parts, HP 20b calculators are equipped with embedded sys-
tems which contain firmware stored in Flash memory chips. The firmware
must support real-time computing constraints, use algorithms that are fast
enough to meet strict time constraints, and make the most efficient use of
limited memory space. The goal of the lab project was to use this embedded
programming in C to create a firmware for the HP 20b calculator.

The lab was broken down into four parts, with each lab adding a spe-
cific functionality to the HP 20b calculator. The aim of the first lab was to
successfully display a predetermined number (negatives, zeros, as well as
positives). The objective of the second lab was to determine and display
which key was pressed. The third lab used the code from the second lab
to continuously display numbers until an operation was pressed. The final
output would be the number entered along with the symbol for the operation
pressed. The fourth and final lab used the Reverse Polish Notation (RPN)
method that allows the user to perform simple algorithms on the HP 20b
calculator.

1 Introduction
Manufactured by Hewlett Packard, the HP 20b Business Consultant was created
with business professionals and students in mind [5]. But the stylish HP 20b be-
came nothing but a brick when all of its functionalities were stripped away by

1

Professor Stephen A. Edwards. Thanks to Professor Edwards, we were left with
a non-functional calculator and a JTAG Platform. From scratch, we successfully
built a fully functional RPN calculator. This paper describes how the calculator
works and discusses the hidden compenents of the calculator that truly make it
run.

2 User Guide

Figure 1: The HP 20b

2.1 Turning HP 20b ON/OFF

To turn the HP 20b on, press . To turn it off, press .

2.2 Entering Numbers

The user can enter digit by digit using the keys labeled 0 through 9. The user can
enter up to twelve digits. In order to negate the number entered, the user can press

. To delete the most recent digit entered, the user can press .

2

2.3 RPN Method Computation

The RPN method utilizes () just as a normal
arithmetic calculator does. The only difference is that it uses the idea of stacks
to store entries [2]. The following examples demonstrates how the stack works.
(NOTE: An error occurs when dividing and retstarts the program. Also, in the actual HP 20b
calculator, the stack is vertical, not horizontal as depicted in the figures. The stack expands up and
down, and has multiple "levels" with lowest level at the bottom. We decided to portray the stack
as horizontal in order to depict the integer array we used in our code.)

Example 1: 12 x 3
First, enter 1, then enter 2, so that the number 12 is displayed on the LCD display
screen. Now, this number will only be stored into the calculator after the user

presses . This will put the number 12 into the stack. Next, enter 3. This

time, the user does not have to press . We made our HP 20b so that
pressing an operand automatically stores whatever number on the LCD into the

stack. Lastly, press . (Figure 2)

Figure 2: Example 1 of RPN.

3

Example 1 demonstrates how to perform simple sequential calculations on the
HP 20b calculator using the RPN method. However, what about expressions that
are more complex? What if the correct calculation of the expression requires fol-
lowing the order of operations? How would you use the RPN method to compute
product of sums, sums of products, etc.? In such cases, the order of operation is
crucial. In order to correctly use the RPN method for more complex arithmetic,
the user should find the closest set of parentheses

Example 2: ((2 + 3) x 5) x 6
Start at the inner most pair of parenthesis. Thus, first compute 2+3 by entering

2, then 3, then pressing Next, enter 5, then press in order to carry
out the operation contained by the next closest set of parenthesis. In this example,

those are the outer set of parentheses. Lastly, enter 6, then press to complete
the outer most operation. (Figure 3)

Figure 3: Example 2 of RPN.

4

3 Social Implications
A calculator is an extremely convenient tool that one can use for finance, physics,
real estate, and even household arithmetic purposes. It promotes productivity and
efficiency by performing computations for the user. In addition, the calculator is
relatively lightweight and portable, allowing it to be brought anywhere it may be
needed. If one programs the calculator using RPN, which is somewhat easier to
do, it can lower production costs, which can help it be mass produced in develop-
ing countries to increase productivity in schools, businesses, among other places.
The Amtel processor also utilizes a very small amount of energy, so it can be used
for an average of 9 month before the battery dies, which is ideal in places where
power is scarce [3].

4 The Platform
In order to reprogram the HP 20b calculator, we required a hardware platform that
consisted of the calculator itself, a 16-pin JTAG header, and a JTAG dongle, or
USB adapter that was connected to a 20-pin ribbon connector cable. The JTAG

header was soldered onto the calculator’s circuit board in order to communicate
to the processor through the JTAG port. The 20-pin connector cable, which was on
one side of the JTAG dongle, was plugged into the JTAG header. Note that the red
wire was on the left and that the four pins on the right side of the ribbon connector
were not plugged in as they were irrelevant [1] [3].

4.1 The Processor

In addition to a keyboard and a liquid crystal display, or LCD, the HP 20b also
has an Atmel AT91SAM7L128 processor, which is also known as SAM7L. This
processor is one of Amtel’s AT91SAM series of chips, which are all based on an
ARM processor core. With respect to the model name, “AT” is for Atmel, “SAM”
is “smart ARM core,” 91 appears to be arbitrary. The 7L series of microcontrollers
only consume a small amount to power, and the final 128 is a reference to the fact
that it includes 128K of flash program memory [3].

Figure 4 shows a block diagram of the SAM7L processor. It is basically a
single standard processor surrounded by memory and many different kinds of
peripherals. Most of them will not be used for this project. The system controller
manages the clock and power supply of each peripheral utilizing software. Thus
energy can be saved if a peripheral is turned off, but it will not operate if it does
happen to be off.

5

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 4: A block diagram of the AT91SAM7L128 micro-controller that is at the
heart of the HP 20b

6

4.2 The LCD Display

The LCD controller creates the AC waveforms needed for the LCD display. The
software interprets the LCD as a series of memory locations that control individual
LCD segments. The LCD of the HP 20b consists of 15 s7 digit displays and
two places that indicates a negative number: one for 12 regular digits and 3 for
exponent digits [5]. There are also symbols for storage, notation, battery life, and
so on (Figure 5).
lcd_init initializes the LCD display
lcd_put_char7 prints an ASCII character in a given column
lcd_print7 prints a string starting from the left most column
lcd_print_int_neg prints a right-justified integer that can be positive or negative
based on a boolean
lcd_print_int prints a right-justified signed integer

Figure 5: LCD Display

4.3 The Keyboard

Old keyboards were torn apart and 3 layers of plastic sheets were found under the
keys. The outer sheets had circuit grids printed onto them while the middle sheets
had holes at each pressure point from the keys. The center sheet separated the two
circuits, preventing them from connecting to each other, but allowed the circuits
to be completed when a key was pressed, which sent a signal to the processor.
The keyboard on the HP 20b was similar to these old keyboards (Figure 6). The
keyboard matrix, which is a 6x7 matrix of keys, is connected to pins on the SAM7L

chip that can be driven by a parallel I/O controller, which is a peripheral that allows

7

software to control and read each pin [4]. Note that the HP 20b keyboard has its
rows set up vertically and its columns horizontally, which is counter-intuitive.
Functions were given to use to incorporate into our code related to the keyboard.
keyboard_init set all the pins to high. keyboard_column_high set the pins of a
certain column to high. keyboard_column_low does the opposite by setting a
column to low. keyboard_row_read checks the row of low columns and returns
true if a key was not pressed.

Figure 6: Keyboard

5 Software Architecture
We used Ubuntu Linux and OpenOCD, an open on-chip debugger, to create a
development environment that allows communication with the SAM7L CPU This
is only possible when there is a successful connection between the JTAG and the
USB port [3]. Also, in order to compile our code, we needed an ARM toolchain,
which include the C compiler, assembler, linker, and the debugger. Linux pro-
vided the GNU tool chain that we used to compile C code (i.e. make flash) [1].
In general, three methods interacted with each other to program our calculator to
perform RPN. keyboard_key scans the keyboard and checks for which key was
pressed. keyboard_get_entry shows numbers and operations on the screen using
keyboard_key. The main method of the RPN lab allows the calculator to perform
operations on numbers obtained by keyboard_get_entry.

8

6 Software Details
6.1 Lab 1: Getting Started: Hello World

For Lab 1, numbers had to be displayed on the LCD screen, whether they were
positive numbers, negative numbers, or 0.

Figure 7 shows how we tried to show that on the HP 20b calculator. In the main
method, the user would input the number that he or she would like to see displayed
on the screen. “number” is the number to be displayed on the calculator, “digit”
is the current digit that the program is looking at, and “lcdIndex” is the index on
the LCD display. First, the program makes sure that the number is in range by
checking that it is between, -999999999 and 999999999 because numbers outside
of the range created an error. This was the range that we chose, but the actual range
of usable numbers is from -int-max to int-max. The program is split into three
parts depending on whether the number is positive, negative or 0. If positive, the
program obtains each digit of the number by finding the remainder of the number
when divided by 10 and printing the digit starting at the right most position. Then
the number is actually divided by 10 and the process repeats until all of the digits
have been printed. If the number is 0 then just 0 is printed. If the number is
negative, then it undergoes the same process as the positive number except that
each digit is negated to make it positive and a “-” is printed in the left most position
on the screen. We realized that we should have made lab 1 into separate methods
rather than putting everything into the main method so that the methods can be
reused. Also, the code for printing the positive and negative number was very
similar, so it probably could have been condensed.

6.2 Lab 2: Listening to the Keyboard

Before doing anything, the keys of the calculator were arranged in a 2d character
array. The keyboard_key method (Figure 8) returns which key of the calculator
was pressed. It does this by originally setting all of the columns of to calculator
to high. Then, one of the columns is set to low and each row of that column is
checked to see if the button was pressed. If it was pressed, it returns a 0, otherwise
a 1 if the button was not pressed. Then the column is set back to high and the
process repeats for the next column. the method returns the character of the button
pressed.

In the main method (Figure 9), which is an infinite for loop, the program
keeps checking to see if a button is pressed. If a key does happen to be pressed,
the entire screen is cleared, accomplished using a for loop that incremented a
counter j where a blank space was printed. The character of the key pressed is

9

then displayed in the right most position. If no key was pressed the calculator
prints “no key pressed.”

6.3 Lab 3: Entering and Displaying Numbers

Figure 10 shows our code for lab 3. The keyboard_get_entry method is an infinite
while loop. If a number is pressed, it is considered to be a digit and is added to
the input with the other digits being shifted one index to the left, essentially by
multiplying the input by 10 and adding the digit. Sign button changes the sign of
variable “sign” when pressed, and this determines the sign of the input. Backspace
removes the most recently added digit by dividing by 10. A blank screen is dis-
played if the input happens to be 0. Note that the key pressed is determined using
the keyboard_key function from lab 2. If an operation is pressed other than a
number, backspace, or the sign button, the for loop is broken. The values of the
variables operation and number are based on the last operation pressed and the
last input variable in the calculator. The sign of the number variable depends on
the sign of “sign.” If no number was pressed before an operation, a predetermined
max_integer is displayed.

The main method (Figure 11) is also an infinite while loop and it gets the entry
of the keyboard using the function keyboard_get_entry. It gets updated as the user
presses numbers, sign, and backspace. If an operation is pressed, it is displayed
onto the screen. The while loop continues to listen for the next number input.

6.4 Lab 4: An RPN Calculator

In lab 4, shown in Figure 12, we recreate the calculator that uses RPN, described in
Section 2. An integer array is used as the stack of numbers. The calculate method
is used to perform operations on the top two numbers on the stack. It can perform
addition, subtraction, multiplication, and division. The program reports an error
if the index of the stack ever goes below 0. After undergoing the operation, the
top most number is set to 0 and the result of the operation is displayed.

The main method (Figure 13) consists of an infinite while loop. Using the
keyboard_get_entry function from lab 3, the screen displays the number that the
user inputs, which is the number that is in the current index of that stack. If
“input” is pressed, then the index of the stack increases and a new number can
be entered. If +,-,*,or / is pressed, the top two numbers undergo the respective
operation using the aforementioned calculate function. More than 1 operation can
be pressed subsequently if more than 2 numbers are in the stack. If not an error
message is displayed.

10

7 Lessons Learned
Through this project we learned embedded programming in C. We learned how
to think through loops and algorithms in writing our programs rather than just use
brute force. Also, we learned the efficiency of putting it on paper before starting
our code. We grew accustomed to using variable names in a way that will help
guide someone through the code without any confusion, and using comments that
are not superfluous but instead help others understand what we did.

8 Criticism of the Course
Sometimes calculators would die and the program would not run, but this was only
a minor inconvenience and the equipment was otherwise fine. Other than changing
the battery once in a while there were no major problems with the calculators.
Also, we enjoyed that we were able to follow our own approach in writing the
code for each lab. Code reviews provided insightful comments and suggestions,
and showed that everyone’s code was different despite what looked like rather
specific instructions

However, depending on one’s experience with C, it was difficult to get started.
Lab 1 was given to us, but the basics of C and the syntax were not explained, which
made it difficult for people with no experience with C. A lecture on pointers was
given later on, but it would be more helpful if we were given a brief crash course
of C before starting Lab 1.

References
[1] Hp-20b repurposing project. Onlinehttp://www.wiki4hp.com/doku.

php?id=20b:repurposing_project.

[2] Hp-20b online manual. Onlinehttp://h10010.www1.hp.com/wwpc/
pscmisc/vac/us/product_pdfs/HP_20b_Online_Manual.pdf.

[3] Engi 1112 lab 1. Onlinehttp://www.cs.columbia.edu/~sedwards/
classes/2012/gateway-spring/hello.pdf.

[4] Engi 1112 lab 2. Onlinehttp://www.cs.columbia.edu/~sedwards/
classes/2012/gateway-spring/keyboard.pdf.

[5] Hp-20b product description. Onlinehttp://h10010.www1.hp.com/wwpc/
us/en/sm/WF05a/215348-215348-64232-20036-215349-3732534.
html?dnr=1.

11

http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b_Online_Manual.pdf
http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b_Online_Manual.pdf
http://www.cs.columbia.edu/~sedwards/classes/2012/gateway-spring/hello.pdf
http://www.cs.columbia.edu/~sedwards/classes/2012/gateway-spring/hello.pdf
http://www.cs.columbia.edu/~sedwards/classes/2012/gateway-spring/keyboard.pdf
http://www.cs.columbia.edu/~sedwards/classes/2012/gateway-spring/keyboard.pdf
http://h10010.www1.hp.com/wwpc/us/en/sm/WF05a/215348-215348-64232-20036-215349-3732534.html?dnr=1
http://h10010.www1.hp.com/wwpc/us/en/sm/WF05a/215348-215348-64232-20036-215349-3732534.html?dnr=1
http://h10010.www1.hp.com/wwpc/us/en/sm/WF05a/215348-215348-64232-20036-215349-3732534.html?dnr=1

int main()
{
int number = 999 ;
int digit;
int lcdIndex = 11;
if (number > 999999999 || number < -999999999) {

lcd_put_char7(’O’, 0);
lcd_put_char7(’V’, 1);
lcd_put_char7(’E’, 2);
lcd_put_char7(’R’, 3);
lcd_put_char7(’F’, 4);
lcd_put_char7(’L’, 5);
lcd_put_char7(’O’, 6);
lcd_put_char7(’W’, 7);

} else {
if (number > 0) {

while (number > 0) {
digit = number % 10;
number = number / 10;
lcd_put_char7(digit+48, lcdIndex);
lcdIndex--;

}
} else if (number == 0) {

lcd_put_char7(48, lcdIndex);
} else if (number <0) {

while (number < 0) {
digit = number % 10;
digit = digit*-1;
number = number / 10;
lcd_put_char7(digit+48, lcdIndex);
lcdIndex--;

}
if (number == 0) {

lcd_put_char7(45, 0);
}

}
}
return 0;

}

Figure 7: Lab 1: Getting Started: Hello World
12

const char keyboard_layout [7][6] = {{’N’, ’I’, ’P’, ’M’, ’F’, ’A’},
{’C’, ’R’, ’N’, ’B’, ’%’, ’L’},
{’T’, ’(’, ’)’, ’G’, ’<’, ’_’},
{’U’, ’7’, ’8’, ’9’, ’/’, ’_’},
{’D’, ’4’, ’5’, ’6’, ’*’, ’_’},
{’S’, ’1’, ’2’, ’3’, ’-’, ’_’},
{’O’, ’0’, ’.’, ’=’, ’+’, ’_’}};

char keyboard_key()
{
int column;
int row;
char button;

for (column = 0; column <= COLUMN; column++) {
keyboard_column_low(column);
for (row = 0; row <= ROW; row++) {

if(!keyboard_row_read(row)) {
keyboard_column_high(column);
button = keyboard_layout[column][row];
return button;

}
}
keyboard_column_high(column);

}
return 0;

}

Figure 8: Lab 2: Listening to the Keyboard (keyboard key method)

13

int main()
{
int i;
int j;
for (;;) {

char key = keyboard_key();
if (key != 0) {

for(j = 0; j < 14; j++) {
lcd_put_char7(’ ’,j);

}
lcd_put_char7(key,11);

} else {
lcd_print7("no key pressed");

}
}

return 0;
}

Figure 9: Lab 2: Listening to the Keyboard (main method)

14

void keyboard_get_entry(struct entry *result) {
int input = 0;
int counter = 0;
int sign = 1;
for (;;) {

int c = keyboard_key();
if (c <= ’9’ && c >= ’0’) {

input = input * 10 + (c - ’0’);
counter++;

} else if (c == ’~’) {
sign *= -1;

} else if (c == ’\b’) {
input /= 10;
if(input == 0)

lcd_put_char7(’ ’, 11);
} else if (c != -1){

result->operation = c;
break;

}
while (c != -1) {

c = keyboard_key();
}
if (input != 0)

lcd_print_int_neg(sign == -1, input);
}
if (counter == 0) {

result->number = INT_MAX;
} else {

result->number = sign*input;
}

}

Figure 10: Lab 3: Entering and Displaying Number (keyboard get entry)

15

int main()
{
struct entry entry;
lcd_init();
keyboard_init();
lcd_print7("PRESS");
while (1) {

keyboard_get_entry(&entry);
if (entry.operation != 0 && entry.number!=INT_MAX) {

lcd_print_int(entry.number);
lcd_put_char7(entry.operation, 0);
entry.operation = 0;

}
}

return 0;
}

Figure 11: Lab 3: Entering and Displaying Number main method

void calculate(char operation, int index, int *stack) {
if (index < 0) {

lcd_print7("ERROR");
} else {

int n1 = stack[index];
int n2 = stack[index+1];
switch (operation) {

case ’+’: stack[index] = n1 + n2; break;
case ’-’: stack[index] = n1 - n2; break;
case ’*’: stack[index] = n1 * n2; break;
case ’/’: stack[index] = n1 / n2; break;

}
stack[index+1] = 0;
lcd_print_int (stack[index]);

}
}

Figure 12: Lab 4: An RPN Calculator calculate method

16

int main()
{

int stack [50];
struct entry entry;
int index = 0;
while (1) {

keyboard_get_entry(&entry);
if (entry.operation != 0 && entry.number!=INT_MAX) {

stack[index] = entry.number;
lcd_print_int(entry.number);
if (entry.operation == ’\r’) {

index++;
//if user presses an operation

} else if (entry.operation == ’+’ || entry.operation == ’-’
||entry.operation == ’*’ || entry.operation == ’/’) {

index--;
calculate(entry.operation, index, stack);
index++;

}
//if user enters an operation without a number

} else if (entry.operation == ’+’ || entry.operation == ’-’ ||
entry.operation == ’*’ || entry.operation == ’/’) {

if (index >= 2) {
index = index - 2;
calculate(entry.operation, index, stack);
index++;

} else {
lcd_print7("ERROR");

}
}

}
return 0;

}

Figure 13: Lab 4: An RPN Calculator main method

17

	Introduction
	User Guide
	Turning hp 20b ON/OFF
	Entering Numbers
	RPN Method Computation

	Social Implications
	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Software Details
	Lab 1: Getting Started: Hello World
	Lab 2: Listening to the Keyboard
	Lab 3: Entering and Displaying Numbers
	Lab 4: An RPN Calculator

	Lessons Learned
	Criticism of the Course

