

ENGI E1112 Departmental Project

Report: Computer Science/Computer

Engineering

Phoenetia Browne, Eileen Li, David Boucard

May 2012

Abstract

 The objective of this project was to change the way a normal HP 20b business

calculator operated. The calculator was basically broken apart and not functioning at the

beginning and we were to write a new firmware for it using C programming. The aim

was for by the end of the project the calculator would operate in RPN, which stands for

Reverse Polish Notation. While working towards the goal we tried to make the calculator

as user friendly and easy to use as possible.

 In order to complete our final goal, we started of by creating a code that would

allow the calculator to display a string of characters on the LCD screen. These characters

were inputted on the computer. The next thing we did was to create a code that would

make the calculator display the key that was pressed on the calculator’s keypad on the

LCD screen. So then the calculator was actually displaying something that was input by

from the calculator itself. The last thing we did was to write a code that let the person

enter numbers and the numbers would be displayed on the screen until and operation key

was pressed. However, we did not get to the ultimate goal of making our calculator

operate in RPN.

1 Introduction

 The HP 20b business consultant is a financial calculated created by the Hewlett

Packard Company in 2008[1]. It features an LCD display that can display up to 12 digits,

an Atmel processor and a 6 x 7 keyboard matrix. The processor interface is also

accessible which is why we were able to connect it to our computer and reprogram it to

do what we wanted. The type of programming we used is called “embedded

programming,” because the calculator is actually a computer-controlled device, the code

we created stays embedded in the calculator.

 We used different aspects of C programming to complete these labs. In the second

lab we the calculator had to be able to display the key that was pressed we used cell

arrays and for loops. In the third that lab where the calculator would allow the user to edit

the keys pressed we used pointers and structs.

2 User Guide

 With our calculator, in order to display a number, press any of the number keys,

and it will show up on the display screen. The maximum amount of numbers that can be

displayed at once is 9 digits. The +/- key changes the sign of the number either from

positive to negative, or negative to positive. The operation keys +, -, x, /, and input lets

the calculator know that the user is finished inputting numbers and that the set of

numbers are ready to be edited.

3 Social Implications

 There are many reasons why easy to use calculators are an integral part of life at

this time. Students use them to do quick calculations which they already know how to do

by had, so it just speeds up the process. People use them on a daily basis for reasons such

as tipping a cab driver, or checking to make sure that bank statements are correct. They

are also used in more serious cases such as medicine. For example, an anesthesiologist

would use it to calculate the right amount of anesthesia to give a patient so that they don’t

wake up during surgery. In this case calculators are used for its accuracy.

 Calculators allow the world to move faster and allow for tasks to take smaller

amounts of time. The calculator that we were supposed to create would be extremely user

friendly for people of all ages and experience.

4 The Platform

The project used the HP-20B financial calculator which can perform basic

scientific and statistical functions. It is made up of an Amtel AT91SAM7L128 embedded

processor, LCD display, and simple keypad.

The JTAG header and power connector were added so users could change the

software but retain battery power, as seen in the figure below and on the right side of the

figure previous. [5]

4.1 The Processor

The calculator contains a 32-bit ARM7TDMI processor in the 7L series designed

to run under low power, with 128 kilobytes of flash memory, smaller than normal for

flash memory. It is also able to run on low batter based on the series of microcontrollers

that allow for it. It uses just.5 mA/MHz while active and runs in a single-supply mode at

1.8 V and 100 nA while powered off. [3] The microcontroller also has a number of

peripherals such as a 40-segment LCD controller, two USARTS, and an SPI. The system

controller controls the power supply to ever peripheral and regulates the system’s clock.

The calculator belongs to the ARM7 family, one of the most widely produced 32-bit

embedded processor due to the cheapness of production. [1]

During operation, the calculator has a linear three part operation of first, ‘Fetch,’

then ‘Decode’ and finally, ‘Execute.’ While the first part is run, the second part is

decoded and the last command is fetched.

4.2 The LCD Display

The liquid crystal display (LCD) uses liquid chemicals to line up when put under

electrical fields, allowing varying intensities of light to pass through to make an image. It

is ultimately a matric of pixels in arranged rows and columns. [6]

The LCD of the calculator can display up to fifteen numbers, each with seven

possible line segments. The twelve first numbers are large, while the last three are

smaller. It has space for two negative signs, and in total, the calculator has forty possible

line segments it can display. Additionally, the calculator also has space segment for

commas. [2]

For class, three functions were given in a library to use. In the lab, the C source

file called lcd.c has a 2-D matrix using the locations on the LCD to divide the display of

each number into its respective seven parts. Secondly, lcd_put_char7 takes two

parameters; the ASCII character intended to appear on the screen, ch, and the column it is

intended to appear in, col. It uses the same matrix in the source file in order to display the

user-inputted character on its corresponding space on the screen. The ‘7’ in the function

stands for the seven line segments available for each number. Finally, lcd_init turned on

the power supply to initialize the LCD. [5]

4.3 Keyboard

The keyboard of the calculator is in a 6 x 7 matrix structure with leads and

switches of two sheets of wiring separated by a buffer sheet. The vertical stacks are called

the rows and the horizontal are called columns. [1] The processor, the SAM7: is

connected to the keyboard by pins. Pressing a key connects a row and column, equalizing

voltage of both row and column. Columns are initially set to high voltage and are the

inputs. Rows, the outputs, take on the voltage once they are connected with the columns.

When a button is pressed, and the column and row is connected, a circuit is completed.

[4]

The processor identifies which key was pressed when the circuit is completed and

references it to the given array of keys, and identifies which button is pressed. The

function given in the second lab that allows for this is keyboard_init and

keyboard_column_high, sets the keys to high voltage. The function

keyboard_column_low also given, sets the voltage to low. Then the function

keyboard_row_read identifies when a key is pressed when the voltage is changed, and

returns which key is pressed from the array. [2]

5 Software Architecture

The first lab required a function that took an integer argument and displayed it on

the calculator. It had to display positive and negative numbers, and address if the user

wanted too big of a number. The second lab created a function called keyboard_key that

gave a code indicating which key was being pressed, or if not were pressed. The function

had to be in keyboard.c. In the third and last lab our group was able to do, function

keyboard_get_entry was added to keyboard.c which enabled the user to input a positive

or negative integer followed by either the input button or one f the other operation keys.

The function needed to wait until the user had finished entering something before if

returned any information, unlike the second lab.

6 Software Details

The lab components for this project were each completed with the overarching

goal of creating a fully functional calculator. Categorized, each lab implements the

existing library code to produce: display functionality, user input functionality, and

finally, the arithmetic functionality of the calculator. This project succeeds in

implementing the first two functionalities.

6.1 Lab 1: A Scrolling Display

In order to build a usable calculator, basic display functions had to be written,

allowing for integer inputs of all real numbers including negative, positive and zero

integers. The task also requires the int to char method which then utilizes the ToString

functions from the Standard.c file. The general method of approaching this problem is to

handle three distinct types of integer inputs: negative, zero and positive and to create

methods to handle each. Negative integers are briefly treated as positive integers and

displayed an added '-' char. The final lab successfully handles all whole, real number

inputs.

Solution for Lab 1: A Scrolling Display

#include "AT91SAM7L128.h"

#include "lcd.h"

int main()

{

 int digitNumber = 0; // how many digits are in the input

 int input = -12345; // the value you want to display

 int absInput = abs(input); // absolute value of the input

 lcd_init();

 // We are going to count how many digits are in the input

 while (absInput != 0) // If absInput is not 0

 {

 // divide he absInput by 10, and count how many times

we can divide by 10

 absInput = absInput/10;

 digitNumber++;

 }

 absInput = abs(input); // Overwrite with the original value

so that we can do another calculation

 int i;

 for (i=0; i < digitNumber; i++)

 {

 int remainder = absInput % 10;

 // 48 == '0' we are adding 48 to convert integer to

corresponding character

 lcd_put_char7(remainder+48, digitNumber-i);

 absInput = absInput / 10;

 }

 // if the input is negative

 if (input < 0) {

 lcd_put_char7('-', 0);

 }

 // if the input is 0

 if(input == 0)

 {

 lcd_put_char7('0', 1);

 }

 return 0;

}

6.2 Lab 2: Scanning the Keyboard

Using the actual physical layout of an average keyboard introduced in 1984 [1],

the code for this lab implements an algorithm which cycles through arrays of rows and

columns to distinguish between pressed keys and unpressed keys to indicate user inputs.

The lab involves basic understanding of circuits and voltage/current manipulations

underlying the keyboard layout scheme. The code interprets the changes in voltage as

user inputs. The code also includes a two dimensional shorthand char array copy of the

actual calculator input keys. This lab utilizes the voltage switches and detection to go

through the calculator by column and within each column, by row. This is implemented

using nested for loops.

Solution for Lab 2: Scanning the Keyboard

Main.c

#include "AT91SAM7L128.h"

#include "lcd.h"

#include "keyboard.h"

//Write a function keyboard_key that returns a code that

indicates either which key is currently being pressed or that no

key

//is being pressed. Add this function to keyboard.c.

//Modify the code in main.c to use this function to report which

key is being pressed.

int main()

{

 int i, j;

 int returnCode;

 char pressedKey;

 char keys[COLUMNCOUNT][ROWCOUNT] =

 {{'N', 'I', 'P', 'P', 'F', 'A'},

 {'C', 'I', 'N', 'B', '%', 'R'},

 {'I', '(', ')', '+', '<' },

 {'^', '7', '8', '9', '/' },

 {'D', '4', '5', '6', '*'},

 {' ', '1', '2', '3', '-'},

 {'O', '0', '.', '=', '+'}};

 lcd_init();

 keyboard_init();

 lcd_print7("SEE");

 keyboard_column_low(0);

 for (;;)

 {

 returnCode = keyboard_key(); // returnCode contains i

* 10 + j

 j=returnCode%10;

 i=returnCode/10;

 pressedKey = keys[i][j];

 lcd_put_char7(pressedKey, 4);

 }

 return 0;

}

Keyboard.h

#ifndef _KEYBOARD_H

define KEYBOARD_H

#define COLUMNCOUNT 7

#define ROWCOUNT 6

/* Keyboard Layout

 Rows and columns on HP 20b schematic are reversed from what

you'd expect

 Columns are outputs; rows are read

 Row0 Row1 Row2 Row3 Row4 Row5

 PC11 PC12 PC13 PC14 PC15 PC26

Col0 PC0 N I/YR PV PMT FV Amort

Col1 PC1 CshFI IRR NPV Bond % RCL

Col2 PC2 INPUT () +/- <-

Col3 PC3 UP 7 8 9 /

Col4 PC4 DOWN 4 5 6 *

Col5 PC5 SHIFT 1 2 3 -

Col6 PC6 0 . = +

 ON/CE is separate

 */

// Initialize the keyboard and set all columns high with pullups

on the rows

extern void keyboard_init(void);

// Set the given column high

extern void keyboard_column_high(int column);

// Set the given column low

extern void keyboard_column_low(int column);

// Return true if the row is high, false otherwise

extern int keyboard_row_read(int row);

// Returns the code that indicates which (and if) key has been

pressed

extern int keyboard_key();

#endif

Keyboard.c

#include "AT91SAM7L128.h"

#include "keyboard.h"

#define KEYBOARD_COLUMNS 0x7f

#define KEYBOARD_ROWS 0x400fc00

const unsigned char keyboard_row_index[] = {11,12,13,14,15,26};

void keyboard_init()

{

 // Initialize the keyboard: Columns are outputs, rows are

inputs

 AT91C_BASE_PMC->PMC_PCER = (uint32) 1 << AT91C_ID_PIOC; // Turn

on PIOC clock

 AT91C_BASE_PIOC->PIO_PER = KEYBOARD_ROWS | KEYBOARD_COLUMNS; //

Enable control

 AT91C_BASE_PIOC->PIO_PPUDR = KEYBOARD_COLUMNS; // Disable

pullups on columns

 AT91C_BASE_PIOC->PIO_OER = KEYBOARD_COLUMNS; // Make columns

outputs

 AT91C_BASE_PIOC->PIO_PPUER = KEYBOARD_ROWS; // Enable

pullups on rows

 AT91C_BASE_PIOC->PIO_ODR = KEYBOARD_ROWS; // Make rows

inputs

 AT91C_BASE_PIOC->PIO_SODR = KEYBOARD_COLUMNS; // Drive all

columns high

}

void keyboard_column_high(int column)

{

 AT91C_BASE_PIOC->PIO_SODR = 1 << column;

}

void keyboard_column_low(int column)

{

 AT91C_BASE_PIOC->PIO_CODR = 1 << column;

}

int keyboard_row_read(int row)

{

 return (AT91C_BASE_PIOC->PIO_PDSR) & (1 <<

keyboard_row_index[row]);

}

int keyboard_key()

{

 int i, j;

 int pressedKey;

 // set every column to high to initialize

 for(i = 0; i < COLUMNCOUNT; i++)

 {

 keyboard_column_high(i);

 }

 // Check each column and set one column at a time to 'low'

 for(i=0; i < COLUMNCOUNT; i++)

 {

 keyboard_column_low(i);

 // Check each row

 for(j=0; j<ROWCOUNT; j++)

 {

 //If the row is low, it means button has been

pressed

 if(!keyboard_row_read(j))//if it is high, then

statement will be false, program will skip if statement

 {

 keyboard_column_high(i);

 pressedKey = i * 10 + j;

 return pressedKey; // return the value

pressedKey back to main function and terminate the function.

 }

 }

 }

 return -1; // return -1 if no key has been pressed

}

6.3 Lab 3: Entering and Displaying Numbers

Once display and scanning functionality are implemented, the calculator is ready

to take actual inputs. The next goal of the project is to take in two integer inputs and an

operation argument to prepare for the arithmetic operations. This portion of the lab

requires significant use of pointers to store input data as the user presses multiple keys.

The inputs are stored as continually updated int. The user input is taken as either an

integer key, operation key, or delete key. The '-' operation can alternate as a subtraction

function or a negation operator if an integer has not been input yet. The delete key alters

the display while also modifying the current integer input only when an integer input has

been made. These inputs can then ready to be sent to perform basic arithmetic functions

on integer inputs.

Solution for Lab 3: Entering and Displaying Numbers

Main.c

#include "AT91SAM7L128.h"

#include "lcd.h"

#include "keyboard.h"

int main()

{

 struct entry entry;

 // Disable the watchdog timer

 *AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

 lcd_init();

 keyboard_init();

 for(;;)

 {

 keyboard_get_entry(&entry);

 lcd_print7("EX ");

 lcd_put_char7(entry.operation, 4);

 int temp = entry.number; //struct that defines data from

temp

 if(temp < 0)

 {

 lcd_put_char7('-', 6);

 temp = -temp;

 }

 lcd_put_char7(temp % 10 + '0', 11); //takes the remainder

and adds to the ASCII value

 temp = temp/10;

 lcd_put_char7(temp % 10 + '0', 10);

 }

 return 0;

}

Part of lcd.c
// Display a string on the 7-segment display starting from the

leftmost column

void lcd_print7(const char *c)

{

 int column;

 char ch;

 for (column = 0 ; column < LCD_7_COLUMNS && (ch = *c++) ;

++column)

 lcd_put_char7(ch, column);

}

// Display a right-justified integer with an optional leading

negative sign

void lcd_print_int_neg(int negative, unsigned int n)

{

 int column = LCD_7_COLUMNS - 4; // Start rightmost

 do {

 lcd_put_char7(n%10 + '0', column--);

 n /= 10;

 } while (n);

 if (negative) lcd_put_char7('-', column--);

 while (column >= 0) lcd_put_char7(' ', column--);

}

// Display a right-justified signed integer

void lcd_print_int(int n) {

 if (n < 0) lcd_print_int_neg(1, -n);

 else lcd_print_int_neg(0, n);

}

Keyboard.c

#include "AT91SAM7L128.h"

#include "keyboard.h"

#define NUM_COLUMNS 7

#define NUM_ROWS 6

#define MAX_INT 100000000

#define KEYBOARD_COLUMNS 0x7f

#define KEYBOARD_ROWS 0x400fc00

const unsigned char keyboard_row_index[] = {11,12,13,14,15,26};

/* Character codes returned by keyboard_key */

const char keyboard_keys[NUM_COLUMNS][NUM_ROWS] = {

 {'N', 'I', 'P', 'M', 'F', 'A'},

 {'C', 'R', 'V', 'B', '%', 'L'},

 {'\r', '(', ')', '~', '\b', 0},

 {'\v', '7', '8', '9', '/', 0},

 {'\n', '4', '5', '6', '*', 0},

 {'S', '1', '2', '3', '-', 0},

 { 0, '0', '.', '=', '+', 0}};

void keyboard_init()

{

 // Initialize the keyboard: Columns are outputs, rows are

inputs

 AT91C_BASE_PMC->PMC_PCER = (uint32) 1 << AT91C_ID_PIOC; // Turn

on PIOC clock

 AT91C_BASE_PIOC->PIO_PER = KEYBOARD_ROWS | KEYBOARD_COLUMNS; //

Enable control

 AT91C_BASE_PIOC->PIO_PPUDR = KEYBOARD_COLUMNS; // Disable

pullups on columns

 AT91C_BASE_PIOC->PIO_OER = KEYBOARD_COLUMNS; // Make columns

outputs

 AT91C_BASE_PIOC->PIO_PPUER = KEYBOARD_ROWS; // Enable

pullups on rows

 AT91C_BASE_PIOC->PIO_ODR = KEYBOARD_ROWS; // Make rows

inputs

 AT91C_BASE_PIOC->PIO_SODR = KEYBOARD_COLUMNS; // Drive all

columns high

}

void keyboard_column_high(int column)

{

 AT91C_BASE_PIOC->PIO_SODR = 1 << column;

}

void keyboard_column_low(int column)

{

 AT91C_BASE_PIOC->PIO_CODR = 1 << column;

}

int keyboard_row_read(int row)

{

 return (AT91C_BASE_PIOC->PIO_PDSR) & (1 <<

keyboard_row_index[row]);

}

int keyboard_key()

{

 int row, col;

 for (col = 0 ; col < NUM_COLUMNS ; col++) {

 keyboard_column_low(col);

 for (row = 0 ; row < NUM_ROWS ; row++)

 if (!keyboard_row_read(row)) {

 keyboard_column_high(col);

 return keyboard_keys[col][row];

 }

 keyboard_column_high(col);

 }

 return -1;

}

void keyboard_get_entry(struct entry *result)

{

 int integer = 0;

 int digitCount = 0;

 char key;

 char lastKey = -1;

 int i;

 int sign = 1;

 for(;;)

 {

 key = keyboard_key();

 if(key != lastKey && key != -1)

 {

 // When the key entered is a number

 if(key >= '0' && key <= '9' && integer < MAX_INT

)

 {

 if(!(lastKey == '0' && key == '0' && digitCount

== 0))

 {

 if(digitCount == 0)

 {

 lcd_print7(" ");

 }

 integer = integer * 10 + (key - '0');

 digitCount++;

 lcd_put_char7(key, 2 + digitCount);

 }

 }

 // When the entered key is operation keys

 if(integer != 0 && (key == '\r' || key == '/' ||

key == '*' || key == '-' || key == '+'))

 {

 lcd_put_char7(key, 0);

 result->number = integer*sign;

 result->operation = key;

 break;

 }

 // When the entered key is backspace

 if(key=='\b' && digitCount>0)

 {

 integer=integer/10;

 lcd_put_char7(' ', 2 + digitCount);

 digitCount--;

 }

 //When the entered key is +/-

 if(key == '~')

 {

 if(integer == 0)

 {

 lcd_print7(" ");

 }

 //lcd_print7("+/-");

 sign = sign* -1;

 if(sign == -1)

 {

 lcd_put_char7('-', 2);

 }

 else {

 lcd_put_char7(' ', 2);

 }

 }

 lastKey = key;

 }

 }

}

7 Lessons Learned

For this project group, the lab presented a two-fold challenge of learning C

programming syntax and computer science methodology with no prior programming

experience while completing lab projects in a timely manner. The best way to learn is to

fail and try again, which happened on multiple occasions during the course. Overall, there

were many valuable lessons learned in this course from creating sound, concise

algorithms to maintaining clear and concise communication of ideas. Perhaps this project

may have been simple for more experienced students, but for fresh inductees to computer

science, the HP20b Calculator project is an great challenge and introduction to

algorithmic problem solving and programming.

8 Criticism of the Joy of Engineering Lab

While the Computer Engineering/Computer Science Lab was one of the more

fulfilling lab sections offered this semester, it was lacking in one aspect. While the

structure of the course was very well organized, there was little flexibility for wide range

of students entering the lab. Some students were clearly unchallenged and underwhelmed

while others, like our group were unable to complete the entire project. A more detailed

description of the lab section's required prior experience and expected student skill level

would have been useful in lab section selection.

References

[1] Introduction to Keyboards: Physical Keyboard Layout. Online http://www-

01.ibm.com/software/globalization/topics/keyboards/physical.html

[2] "HP 20b Business Consultant Financial Calculator Overview." HP: Hewlett-

 Packard. Web. 09 Dec. 2011.

 <http://h10010.www1.hp.com/wwpc/us/en/sm/WF05a/215348-215348- 64232-

 20036-215349-3732534.html>.

 [3] Hewlett-Packard Company. The RPN Stack. HP 20b Business Consultant Financial

 Calculator Manual. 18. Web. 9 Dec. 2011.

 <http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b_Onlin

 e_Manual.pdf>.

 [4] HP Business Consultant Financial Calculator. Digital image. Web. 06 May 2012.

 <http://www.collectibles-articles.com/antique/collectible-image-large/hp-20b-
business-consultant-financial-calculator-new_330337963278.jpg>.

[5] Edwards, Stephen. "Repurposing an HP Calculator." Web. 05 May 2012.

 <http://www.cs.columbia.edu/~sedwards/classes/2011/gateway-

 fall/keyboard.pdf>.

[6] Hp-20b repurposing project. Online http://www.wiki4hp.com/doku.

php?id=20b:repurposing_project.

