
ENGI E1112 Departmental Project Report:
Computer Science/Computer Engineering

Charlie Wu, Michael Yang

May, 2011

Abstract

This report documents our process through which we develop a func-
tioning HP 20b calculator from its constituent hardware and software com-
ponents using C. We first demonstrate how the end product works and its
possible social implications before moving on to describing the calculator’s
hardware and software.

Finding the main components of the hardware, and how each of these,
the processor, LCD, and keyboard function, we come to an understanding
of the embedded system’s physical components, which helps us think about
how to write our software later.

The software section then details how we successively build upon the
core hardware interactions with the software to create new functionality and
bring the calculator closer to functioning as expected. We first build a func-
tion to output data, then one for checking for input. Building on this, we
write functions that interactively aggregate input meaningfully and evaluate
it arithmetically.

Concluding, we address our experiences with the course.

1 Introduction
Computing devices are integrated into almost every aspect of the modern lifestyle.
From reading books to playing games, computers have become more diverse and
pervasive, almost to the extent that we no longer actively think of them as comput-
ing devices. The fact that many of the electronics we interact with now have com-
putational power manifests itself in this semester’s Gateway project: program-
ming the HP20b calculator.

1

While an embedded system like the HP20b shares much in common with the
computer and other computing devices, there are limitations that it imposes that
gives the sense of programming for it a different twist. It brings you back into
the world before everything was already written and packaged in some library,
and you didn’t have to think too much about efficiency, memory, or basic device
limitations.

In this experience, we describe the process of stepping off of the shoulders of
the giants before us, building a calculator up from its basic functions, and how the
understanding of the hardware we use gives rise to how we program and how we
interact with systems in which hardware and software are so closely intertwined.

2 User Guide
Our calculator is programmed based on Reverse Polish Notation (RPN). In RPN,
each individual expression consists of two operands, followed by their operator.
This is different from the format we are used to, which placed the operator be-
tween the two operands.

In order to begin your calculation, input any number. As you enter your num-
ber, the calculator LCD display will display the number. To move on to the next
input, press the input key. This tells the calculator that the current number is ac-
cepted, and to move on to the next number. To signal that the number has been
accepted, an R character is displayed at the far left of the LCD display. From
here, you can input your next number, and it will be saved. The new number will
displace the original number displayed on the LCD.

After inputting at least two numbers, you may perform operations. Rather
than press Input to signal the end of a number, you press the operation to act on
the current number and the past number.

From here, we can create more complex expressions from our simple individ-
ual expression. Each individual expression can be treated as an operand, and be
operated on by another operator. For example, in the expression "5, input, 4, +",
the operands 5 and 4 belong to the operator "+". However, in the expression "5,
input, 4, + , 3, input, 2, -, *" there are two sub-expressions "5, input, 4, +" and "3,
input, 2, -" that belong to the operator "*". Note: the "input" key is denoted by the
letter "r".

You may notice that there are multiple ways to format more complex expres-
sions. For instance, the expression 4+3+2 can be written in these two ways: "4 ,
input , 3 , input , 2 , + , +" and "4 , input , 3 , + , 2 , +". As long as you remem-
ber that the current operation acts on the two most recent input values, you can
structure expressions in multiple valid formats.

2

Figure 1: The HP 20b

Two key details are that the two operands must have been input prior to the
operation. Furthermore, the operation is performed immediately and the result is
displayed to the LCD screen.

To address the problem of underflow, we ignore the operation if only one num-
ber is present in the stack. If any operation is input following the number in the
first position of the stack, the number is still displayed in the LCD. The stack is
cleared if too many (>100) items are being stored.

3 Social Implications
The HP 20b is a compact and light calculator which we programmed to be able
to perform accurate arithmetic calculations. The calculator is viable for every-
day school use. Furthermore, as a teaching tool of embedded programming, the
calculator is a relatively cheap piece of hardware with vast potential for firmware
development.

4 The Platform
We initially learned about hacking the 20b calculator through the first lab in this
course[1]. Further readings include the HP20b Repurposing Project website[2].

3

4.1 The Processor

The HP 20b is little more than a keyboard and LCD, connected to an Atmel
AT91SAM7L128(SAM7L) processor. The SAM7L is a low power member of
Atmel’s AT91SAM series of chips, which are all built around an ARM processor
core ("AT" is for Atmel; "SAM" is "smart ARM core;" 91 appears to be arbitrary).
The 7L series of microcontrollers are designed for low power (hence the L), and
the final 128 is a reminder that it includes 128K of flash program memory. Fig-
ure 2 shows a block diagram of the SAM7L chip. It looks complicated, but is
essentially a single standard processor surrounded by memory and a wide variety
of peripherals, most of which are unused for this project. The system controller
controls the clock and power supply of each peripheral through software. This
makes it possible to save energy by not powering on unnecessary peripherals, but
can also make a peripheral appear not to work if the power is not turned on when
needed.

4.2 The LCD Display

The calculator’s LCD display, shown in Figure 3, is driven by complex ac wave-
forms, which are generated from the LCD controller. The LCD has 15 digit dis-
play positions, which represented in segments, as shown in Figure 3; of these, 12
are for regular digits, and 3 are for exponent digits. For both regular and expo-
nential digits, there is a negative sign position. Although there are comma and
decimals present on the LCD, we did not include either in our calculator firmware
considerations. Furthermore, in the space above the digit positions, there is a
block of pixels for more advanced calculator functions, including the financial
functions. Lastly, there are various extra indicators for RPN, angle units (degree
or radian), battery life, and others.

4.3 The Keyboard

The keyboard is a row/column matrix of switches. The rows and columns are
connected to general Input/Output (I/O) port pins. See the Figure 4 for the specific
row/column combinations.

The matrix is connected to pins on the processor chip that can by driven by
a parallel I.O controller, which is a peripheral that enables software to control
and read the state of each pin. In our second lab, we explored this peripheral by
writing a function that returned which key was being pressed, or if no key was
currently being pressed.

4

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 2: A block diagram of the AT91SAM7L microcontroller that is at the heart
of the HP 20b

5

PD
F
文
件
使
用

 "
pd

fF
ac

to
ry

 P
ro

"
试
用
版
本
创
建

ww
w.

fi
ne

pr
in

t.
cn

Figure 3: A diagram of the HP20b’s LCD display

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

COL0

COL1

COL2

COL3

R
O

W
0

R
O

W
1

R
O

W
2

R
O

W
3

R
O

W
4

R
O

W
5

COL4

COL5

S
E

G
35

S
E

G
1

S
E

G
14

S
E

G
2

S
E

G
36

S
E

G
3

S
E

G
4

S
E

G
5

S
E

G
6

C
O

M
6

C
O

M
7

S
E

G
15

S
E

G
37

S
E

G
16

C
O

M
8

S
E

G
38

C
O

M
9

S
E

G
17

S
E

G
39

S
E

G
18

S
E

G
19

S
E

G
20

S
E

G
21

S
E

G
22

S
E

G
23

S
E

G
24

S
E

G
25

C
O

M
0

S
E

G
26

C
O

M
1

S
E

G
27

S
E

G
28

C
O

M
2

C
O

M
3

S
E

G
7

S
E

G
29

C
O

M
4

S
E

G
8

C
O

M
5

S
E

G
9

S
E

G
0

S
E

G
10

S
E

G
30

S
E

G
11

S
E

G
31

S
E

G
12

S
E

G
32

S
E

G
13

S
E

G
33

S
E

G
34

COL6

ROW[0:5]

COL[0:6]

ON/OFF

COM[0:9]

SEG[0:39]

Inventec Multimedia & Telecom Corporation

DRAW NO REV.

DESCRIPTION

DATE:
APPROVAL CHECK DESIGN DRAW

DATE DATE DATE DATE

MJ920A

Keypad & LCD

02A

HP EUROMODEL

SHEET OF3 4Tuesday, February 19, 2008

Inventec Multimedia & Telecom Corporation

DRAW NO REV.

DESCRIPTION

DATE:
APPROVAL CHECK DESIGN DRAW

DATE DATE DATE DATE

MJ920A

Keypad & LCD

02A

HP EUROMODEL

SHEET OF3 4Tuesday, February 19, 2008

Inventec Multimedia & Telecom Corporation

DRAW NO REV.

DESCRIPTION

DATE:
APPROVAL CHECK DESIGN DRAW

DATE DATE DATE DATE

MJ920A

Keypad & LCD

02A

HP EUROMODEL

SHEET OF3 4Tuesday, February 19, 2008

N I% PV PMT FV AMRT

CshFI RCL%BondNPVIRR

INPUT

UP

DOWN

SHIFT

ON/CE 0

1

4

7

()

.

2

5

8

+/- <——

/

X

-

+=

3

6

9

SW11SW11

COL3COL3

SW22SW22

SW24SW24

SW12SW12

COL6COL6

SW26SW26

ROW5ROW5

SW17SW17

SW8SW8

ROW3ROW3

SW4SW4

SW29SW29

SW10SW10

ROW1ROW1

SW31SW31

COL2COL2

SW33SW33

SW14SW14

SW5SW5

SW35SW35

SW16SW16

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 U2Euro_LCD_CON50 U2Euro_LCD_CON50

SW19SW19

ROW0ROW0

COL5COL5 SW37SW37

ROW4ROW4

SW9SW9

SW21SW21

SW13SW13

COL0COL0

SW23SW23

COL1COL1

SW25SW25 SW27SW27

SW6SW6

SW28SW28COL4COL4

SW3SW3

SW30SW30 SW32SW32

SW7SW7

SW34SW34

TP11TP11

SW15SW15

SW1SW1

SW36SW36

ROW2ROW2

SW18SW18

SW2SW2

SW20SW20

PDF created with pdfFactory trial version www.pdffactory.com

Figure 4: A circuit diagram of the keyboard and its keys

7

5 Software Architecture
The calculator consists of four basic actions that build upon each other to func-
tion: displaying numbers, detecting keys, entering numbers, and evaluating ex-
pressions. The first component is the LCD integer printing function. This allows
us to display the results of our work on the LCD and represents the output por-
tion of the calculator’s user interface. For the input half, we turn to the detection
component, which tells us which key is pressed at any given time. Combining the
input and output components, we are able to enter numbers and operation, and
display the as they are entered by aggregating the results of the keyboard input.
Wrapping this number and operation data together, and leveraging the previous
components allows us to further aggregate these data into arithmetic expressions,
which can then be evaluated.

6 Software Details
6.1 Lab 1: A Scrolling Display

In the first lab we were asked to write a function to take an integer and display its
decimal representation on the LCD. Because each of the LCD’s columns function
independently of each other, we decided that we had to split the integer accord-
ingly. In order to accomplish this, we took advantage of the C language’s integer
division and modulus operations.

We used the desired base (10 for decimal digits) to successively extract digits
by using the modulus operation to take the least significant digit, and the division
operation to remove the taken digit, shifting the next significant digit into place.
This process occurs, displaying each digit as it’s taken off, until the taken digit is
a zero, indicating the "end" of the digit.

This algorithm works because of how integer division is accomplished in C,
which truncates the floating-point portion of the result accomplished with normal
mathematical division. For example, the number 123 divided by 10 would seem
to result in 12.3, but by truncating the numbers after the decimal, it becomes 12,
allowing it to "cut off" the end digit of a number. By successively performing these
operations, we eventually narrow the integer down to one digit, which integer
division will evaluate to zero, indicating the endpoint of the algorithm.

Additional conditions and minor modifications were added to support "0" and
negative numbers. The function checks for "0" or a negative number before be-
ginning the normal algorithm. If the number is a "0", a "0" is printed and function
finishes. If the number is negative, the sign is stored in another variable, and the
algorithm is applied to the absolute value of the number. After this, a minus sign

8

is added in front of the number to indicate that it is negative.
Lab 1

1 #define MAX_POS 11
2 #define BASE 10
3

4 void displayInt(int number)
5 {
6 int positionLimit = MAX_POS;
7

8 if(number < 0)
9 {

10 // leave space for ’-’
11 positionLimit--;
12 // get absolute value
13 number *= -1;
14 }
15

16 int position = 0;
17

18 // continues while digits and spaces are left (or number is initially 0)
19 while((number != 0 && position <= positionLimit) || position == 0)
20 {
21 // get least sig digit
22 int digit = number % BASE;
23

24 // print character form of digit
25 lcd_put_char7(’0’ + digit, MAX_POS - position);
26

27 // cut least sig digit
28 n /= BASE;
29 position++;
30 }
31

32 // positionLimit is MAX_POS if positive, MAX_POS - 1 if negative
33 if(positionLimit == MAX_POS - 1)
34 lcd_put_char7(’-’, MAX_POS - p);
35 }
36

37 int main()
38 {
39 lcd_init();
40

41 displayInt(0);
42

43

44 return 0;
45 }

6.2 Lab 2: Scanning the Keyboard

Lab 2 required that we provide a function to scan the keyboard for input, and
return some code indicating the key that was pressed. We were provided with
functions that controlled the voltages across the columns of the keyboard, and
another function that determined whether a key in a row was being pressed based

9

on those voltages. To check if a key is being pressed, we set all of the column
voltages to high ("1"), except the column we want to check. We then use the row
reading function on each row to determine which of the rows is being pressed, in
which case it will return "0".

To check if any, not just an individual key, is being pressed, we iterate over
each column, setting its voltage to low, and then iterating over each row, checking
its value. We do this by using a nested loop to visit each key and check its pressed
status. Once we find a key that is pressed, we return the column and row in the
form of a two-digit number, the first digit representing the column and the second
representing the row, and display this on the LCD. If no key is being pressed, it
will return a "NO_KEY" (set to -1, a number chosen because no combination of
columns or rows could result in a negative number). By placing this function in
an infinite loop, we are able to continuously check which keys are being pressed,
and display the "NO_KEY" value otherwise.

After finishing this lab, we decided to use Professor Edwards’ implementa-
tion of it because it returned more useful output (characters rather than encoded
coordinates).

Lab 2
1 int keyboard_key_read(int row, int column)
2 {
3 // reset columns except for target column
4 int i;
5 for(i = 0; i < MAX_COL; i++)
6 keyboard_column_high(i);
7 keyboard_column_low(column);
8

9 // return if the row is low
10 return !keyboard_row_read(row);
11 }
12

13 int keyboard_key()
14 {
15 // initialize to no key
16 int coordinate = NO_KEY;
17

18 // check each key in keyboard matrix
19 int column, row;
20 for(row = 0; row < MAX_ROW; row++)
21 for(column = 0; column < MAX_COL; column++)
22 if(keyboard_key_read(row, column))
23 // return a code containing pressed row and column
24 coordinate = 10 * row + column;
25

26 return coordinate;
27 }

10

6.3 Lab 3: Entering and Displaying Numbers

For lab 3, we were instructed to devise a function to enter and display user-
inputted numbers, followed by an operation key. To accomplish this, we contain
the number information in an integer buffer variable, and successively append
digits until an operation key is pressed. The input key is first contained in the
"key" variable, obtained by using a solution from the previous lab provided to us.
Additionally, a count variable containing the number of digits in the buffer helps
prevent integer overflow and a sign variable handles negative numbers.

If the input is a digit, we append the digit to the end of our number (by multi-
plying the existing digit by 10, which shifts each digit to one higher significance,
and then add the incoming digit), refresh the LCD, increment our count, set the
"key" variable to our continuation condition ("NO_KEY"), and insert the variable
into the "last_key" variable. The "key" variable is set to this continuation condi-
tion for all keys except the operation keys, so this lets us know when the number
portion of the input is finished (in this case, it’s not), and the "last_key" variable
is used to ensure a gap of "NO_KEY" between key presses. This "NO_KEY"
is analogous to the gap in key presses the user performs when his or her finger
is lifted from the keyboard. This is necessary because the processor runs much
faster than human input, so this prevents erroneous input from occurring because
the processor still thinks the same key is being pressed when the finger has not
actually been lifted.

Various other keys are supported, such as the backspace and sign change keys,
which set similar continuation conditions for the number section of the input.
When the sign change key is pressed, the internal sign variable is flipped, the LCD
is updated (removing or adding a negative sign), and the continuation conditions
are set. The LCD representation code (in the latest version) so that the negative
sign appears before the most significant digit. If there are no digits, a negative sign
by itself is displayed. For the backspace key, we use integer division to remove
the last digit in the buffer and decrement the count, followed by the continuation
conditions. In the case that the backspace character removes all visible digits,
even though the value of the buffer is "0", we display no digits (as expected from
the functionality of current calculators).

When the user finally does input an operation key, the loop that scans for input
exits, and the last value taken was the operation. If the length of the buffer is "0",
indicating that no number was input, the buffer is set to a value of "INT_MAX"
to indicate this.

When the function ends, it sets the operation field of the struct to the last key

11

(which contains the operation) and the number field to the buffer, multiplied by
its sign.

Lab 3
1 void keyboard_get_entry(struct entry *result)
2 {
3 // initialize to defaults
4 int key = NO_KEY;
5 int last_key = NO_KEY;
6 int sign = 1;
7 int num_buffer = 0;
8 int count = 0;
9

10 // run while there is no operation
11 while(key == NO_KEY)
12 {
13 // get a key
14 key = keyboard_key();
15

16 // ensure a gap between presses
17 while(last_key != NO_KEY)
18 {
19 last_key = key;
20 key = keyboard_key();
21 }
22

23 // handle sign change and continue
24 if(key == ’~’)
25 {
26 // flip sign
27 sign = -1 * sign;
28

29 // handle LCD changes
30 if(count == 0)
31 {
32 if(sign == -1)
33 lcd_put_char7(’-’, LCD_LAST_COLUMN);
34 else
35 lcd_put_char7(’ ’, LCD_LAST_COLUMN);
36 }
37 else
38 lcd_print_int_neg(sign == -1, num_buffer);
39

40 // continue
41 last_key = key;
42 key = NO_KEY;
43 }
44

45 // handle backspaces if there are digits
46 if(key == ’\b’ && count > 0)
47 {
48 // cut least significant digit
49 num_buffer /= 10;
50 count--;
51

52 // handle LCD changes
53 if(count == 0)

12

54 {
55 if(sign == -1)
56 {
57 lcd_put_char7(’ ’, LCD_LAST_COLUMN - 1);
58 lcd_put_char7(’-’, LCD_LAST_COLUMN);
59 }
60 else
61 lcd_put_char7(’ ’, LCD_LAST_COLUMN);
62 }
63 else
64 lcd_print_int_neg(sign == -1, num_buffer);
65

66 // continue
67 last_key = key;
68 key = NO_KEY;
69 }
70

71 // handle digits
72 if(key >= ’0’ && key <= ’9’)
73 {
74 // ensure no overflow
75 if(count < MAX_COUNT)
76 {
77 // append digit
78 num_buffer = (num_buffer * 10) + (int)(key - ’0’);
79 count++;
80 }
81

82 // handle LCD changes
83 lcd_print_int_neg(sign == -1, num_buffer);
84

85 // continue
86 last_key = key;
87 key = NO_KEY;
88 }
89

90 // if none of the above were processed, exit
91 }
92

93 // marker for no number is INT_MAX
94 if(count == 0)
95 num_buffer = INT_MAX;
96

97 // loop exits when operation is pressed
98 // key contains the operation
99 result->operation = key;

100 result->number = sign * num_buffer;
101 }

6.4 Lab 4: An RPN Calculator

To implement the RPN calculator, we used the entry function from the last lab,
which builds upon the reading and displaying functions from the previous labs.
To store the input information, we used a stack, implemented by using an array
and an integer indicating the head (point of insertion, and also the length) of the

13

stack. When a number is pushed onto the stack, the number is added at the head
position and the head is incremented. When a number is popped off the stack, the
head is decremented and the number at the new head is removed (this shifts the
head and removes the number). In the actual code, I use C-style post-increment
and pre-increment to shorten and in some way abstract the function of pushing
and popping. Additionally, the stack uses lazy deletion, so the numbers in the
stack are never actually "erased", but rather written over if necessary. The head
variable tells us which of the stack items are accessible.

We then repeatedly take in inputs. Similar to how the keyboard reading func-
tion forced gaps between keys, the calculator forces "gaps" between entries by
setting the operation to "NO_OP", which is represented as the null value after
each valid entry.

Moving on to the actual evalution, if the input is a number, followed by the
"Input" operation, the number is pushed onto the stack and the loop continues. If
the number is accompanied by an arithmetic operator, then the number is pushed
onto the stack and the operator is evaluated by popping two numbers off of the
stack, performing the operation on them, and then placing the result into the stack.
This algorithm acts on the definition of RPN input to evaluate the expression.

Underflow is handled when only one number is in the stack. In this case head
(which also is the length of the stack) is 1, and the operation is ignored.

Overflow is NOT HANDLED AT THE MOMENT???, but the stack size of
100 is so large that the human entering the numbers will likely forget the expres-
sion before this occurs. The stack only increases in size from a continuous string
of numbers, because operations reduce the size of the stack, so only 100 numbers
or evaluated expressions entered in sequentially will result in overflow.

Lab 4
1 void calculator_rpn(void)
2 {
3 // initialize stack
4 int stack[STACK_SIZE];
5 int head = 0;
6

7 int last_key = NO_KEY;
8

9 struct entry entry;
10

11 while(1)
12 {
13 keyboard_get_entry(&entry);
14

15 // handle valid input (non-empty num, op pair)
16 if(entry.operation != NO_OP)
17 {
18 if(entry.number != INT_MAX)

14

19 {
20 // handle LCD output
21 lcd_print_int(entry.number);
22 if(entry.operation == INPUT)
23 lcd_put_char7(’i’, 0);
24 else
25 lcd_put_char7(entry.operation, 0);
26

27 // handle overflow
28 if(head == STACK_SIZE)
29 {
30 //clear stack
31 head = 0;
32 clear_lcd();
33

34 // print error
35 lcd_put_char7(’O’, 0);
36 }
37

38 // push number onto stack
39 stack[head++] = entry.number;
40 }
41

42 // perform non-input operation with check for underflow
43 if(entry.operation != INPUT && head > 1)
44 {
45 // pop two entries from stack
46 int val1 = stack[--head];
47 int val2 = stack[--head];
48

49

50

51 int result = 0;
52

53 // perform operation
54 switch(entry.operation)
55 {
56 case ’+’:
57 if (val2/2 + val1/2 <= INT_MAX/2 || -1 * (val2/2 + val1/2) <= INT_MAX/2)
58 result = val2 + val1;
59 else
60 {
61 //clear stack
62 head = 0;
63 clear_lcd();
64

65 // print error
66 lcd_put_char7(’E’, 0);
67 }
68 break;
69 case ’-’:
70 if (val2/2 - val1/2 <= INT_MAX/2 || -1 * (val2/2 - val1/2) <= INT_MAX/2)
71 result = val2 - val1;
72 else
73 {
74 //clear stack
75 head = 0;

15

76 clear_lcd();
77

78 // print error
79 lcd_put_char7(’E’, 0);
80 }
81 break;
82 case ’*’:
83 result = val2 * val1;
84 break;
85 case ’/’:
86 result = val2 / val1;
87 break;
88 default:
89 break;
90 }
91

92 // push result onto stack and print
93 stack[head++] = result;
94 lcd_print_int(result);
95

96 last_key = entry.operation;
97 }
98

99 // clear
100 if(entry.operation == CLEAR)
101 {
102 head = 0;
103 clear_lcd();
104 }
105

106 // continue
107 entry.operation = NO_OP;
108 }
109

110 // ensure a gap
111 while(last_key != NO_KEY)
112 last_key = keyboard_key();
113 }
114 }

6.5 Lab 4+: An Infix Calculator

We decided to try out working on an infix calculator in order to improve the us-
ability of the calculator.

To evaluate infix expressions, two stacks are maintained. One is an expres-
sion stack, which contains an RPN expression and the other is the operator stack,
which is necessary in using the chosen algorithm (Shunting-Yard) to convert infix
to RPN. The expression stacks consists of entry structs, which are actually just
numbers and operators, and the struct is just used to differentiate them. If the op-
erator field is "NO_OP", then the entry is just a number, and if the number field is
a "INT_MAX", then the entry is just an operator.

16

The function first takes the number portion of the entry and places it in the
input stack. For the operator part, the function unwinds the operator stack into the
expression stack until an operator of lower precedence appears. At this point, the
input operator is pushed onto the stack and evaluation continues. If the operator
in question is an equals sign, then the operator stack is entirely unwound and the
expression stack is evaluated as a postfix expression. The result of this postfix
expression is then printed, and the expression stack is reset with the result at the
head.

Lab 4+
1

2 void calculator_infix(void)
3 {
4 // initialize stacks
5 struct entry expr_stack[STACK_SIZE];
6 char op_stack[STACK_SIZE];
7 int expr_head = 0;
8 int op_head = 0;
9 int last_key = NO_KEY;

10 struct entry entry;
11

12 while(1)
13 {
14 keyboard_get_entry(&entry);
15

16 // handle valid input (non-empty num, op pair)
17 if(entry.operation != NO_OP)
18 {
19 if(entry.number != INT_MAX)
20 {
21 // handle LCD output
22 lcd_print_int(entry.number);
23

24 // handle overflow
25 if(expr_head == STACK_SIZE || op_head == STACK_SIZE)
26 {
27 //clear stacks
28 expr_head = 0;
29 op_head = 0;
30

31 clear_lcd();
32

33 // print error
34 lcd_put_char7(’O’, 0);
35 }
36

37 // push number onto expression stack
38 struct entry num_expr = {.number = entry.number, .operation = NO_OP};
39 expr_stack[expr_head++] = num_expr;
40 }
41

42 if(entry.operation == INPUT)
43 lcd_put_char7(’i’, 0);
44 else

17

45 lcd_put_char7(entry.operation, 0);
46

47 // pop operator stack onto expression stack until lower priority operator
48 // push the current operator into the stack
49 switch(entry.operation)
50 {
51 case ’(’:
52 op_stack[op_head++] = entry.operation;
53 break;
54 case ’)’:
55 while(op_head != 0)
56 {
57 char top = op_stack[op_head - 1];
58

59 if(top ==’(’)
60 {
61 op_stack[--op_head];
62 break;
63 }
64

65 struct entry op_expr = {.number = INT_MAX, .operation = op_stack[--op_head]};
66 expr_stack[expr_head++] = op_expr;
67 }
68 break;
69 case ’+’:
70 while(op_head != 0)
71 {
72 char top = op_stack[op_head - 1];
73 if(top ==’(’)
74 break;
75

76 struct entry op_expr = {.number = INT_MAX, .operation = op_stack[--op_head]};
77 expr_stack[expr_head++] = op_expr;
78 }
79 op_stack[op_head++] = entry.operation;
80 break;
81 case ’-’:
82 while(op_head != 0)
83 {
84 char top = op_stack[op_head - 1];
85 if(top ==’(’)
86 break;
87

88 struct entry op_expr = {.number = INT_MAX, .operation = op_stack[--op_head]};
89 expr_stack[expr_head++] = op_expr;
90 }
91 op_stack[op_head++] = entry.operation;
92 break;
93 case ’*’:
94 while(op_head != 0)
95 {
96 char top = op_stack[op_head - 1];
97

98 if(top == ’+’ || top == ’-’ || top == ’(’)
99 break;

100

101 struct entry op_expr = {.number = INT_MAX, .operation = op_stack[--op_head]};

18

102 expr_stack[expr_head++] = op_expr;
103 }
104 op_stack[op_head++] = entry.operation;
105 break;
106 case ’/’:
107 while(op_head != 0)
108 {
109 char top = op_stack[op_head - 1];
110

111 if(top == ’+’ || top == ’-’ || top == ’(’)
112 break;
113

114 struct entry op_expr = {.number = INT_MAX, .operation = op_stack[--op_head]};
115 expr_stack[expr_head++] = op_expr;
116 }
117 op_stack[op_head++] = entry.operation;
118 break;
119 // pop all operators onto expression stack
120 case ’=’:
121 while(op_head != 0)
122 {
123 struct entry op_expr = {.number = INT_MAX, .operation = op_stack[--op_head]};
124 expr_stack[expr_head++] = op_expr;
125 }
126 // show result and reduce stack
127 int result = evaluate_postfix(expr_stack, expr_head);
128 expr_head = 0;
129 struct entry num_expr = {.number = result, .operation = NO_OP};
130 expr_stack[expr_head++] = num_expr;
131 lcd_print_int(result);
132 break;
133 default:
134 break;
135 }
136

137 last_key = entry.operation;
138

139 // continue
140 entry.operation = NO_OP;
141 }
142

143 // ensure a gap
144 while(last_key != NO_KEY)
145 last_key = keyboard_key();
146 }
147 }
148

149 int evaluate_postfix(struct entry *expr_stack, int length)
150 {
151 // initialize stack
152 int head = 0;
153 int num_stack[STACK_SIZE];
154 int i;
155

156 // iterate through input
157 for(i = 0; i < length; i++)
158 {

19

159 struct entry input = expr_stack[i];
160

161 // operation == NO_OP indicates a number
162 if(input.operation == NO_OP)
163 num_stack[head++] = input.number;
164 else
165 {
166 int val1 = num_stack[--head];
167 int val2 = num_stack[--head];
168 int result = 0;
169

170 switch(input.operation)
171 {
172 case ’+’:
173 if (val2/2 + val1/2 <= INT_MAX/2 || -1 * (val2/2 + val1/2) <= INT_MAX/2)
174 result = val2 + val1;
175 else //handle overflow
176 {
177 //clear stack
178 head = 0;
179 clear_lcd();
180

181 // print error
182 lcd_put_char7(’E’, 0);
183 }
184 break;
185 case ’-’:
186 if (val2/2 - val1/2 <= INT_MAX/2 || -1 * (val2/2 - val1/2) <= INT_MAX/2)
187 result = val2 - val1;
188 else //handle overflow
189 {
190 //clear stack
191 head = 0;
192 clear_lcd();
193

194 // print error
195 lcd_put_char7(’E’, 0);
196 }
197 break;
198 case ’*’:
199 result = val2 * val1;
200 break;
201 case ’/’:
202 result = val2 / val1;
203 break;
204 default:
205 break;
206 }
207

208 num_stack[head++] = result;
209 }
210 }
211

212 // return last entry in stack
213 return num_stack[--head];
214 }

20

7 Lessons Learned
Michael: I learned how to interact with embedded systems that might have more
limitations than the machines that I’m used to working with. When the calculator
can only display a limited amount of data, it’s sometimes a bit difficult to under-
stand what’s going wrong. What I’ve learned is how to try and intelligently work
with the information I’m given. (I also have a greater sense of appreciation for
those people that write debuggers).

Future students may want to try and find patterns in their errors by varying
input to debug their code.

I don’t wish anything more than what was told to me at the beginning of class.
Realizing something yourself, or having someone guide you through a process is
much more helpful in the learning process than simply being told that something
is true.

Charlie: I gained a greater appreciation of the computer science and engi-
neering that goes into systems beyond your normal computer. The course was an
introduction to C for me, and was structured rather well. The lessons built upon
each other, and it was helpful to learn from the more experienced students in the
course.

Also, I enjoyed learning of the stack data structure, and how it applies to the
RPN and infix methods of arithmetic. Lastly, the introduction to LATEX opened
up a new way to format word documents into a pdf form.

8 Criticism of the Course
Michael: While I do think that the labs weren’t terribly challenging, I do realize
that this is an introductory course, and I think relative to its stated purpose, that the
course was sufficient. I did wish that there was more interaction with the computer
engineering side of things though.

Charlie: While we did explore some of the hardware inside the calculator, the
course was more heavily focused on the computer science label, as programming
was the bulk of the course. While I did prefer focusing on programming, I felt that
we could have benefitted from more exposure to hardware elements of not just the
calculator.

References
[1] Gateway lab for computer science and computer engineering. Online

http://www.cs.columbia.edu/~sedwards/classes/2012/
gateway-spring/index.html.

21

http://www.cs.columbia.edu/~sedwards/classes/2012/gateway-spring/index.html
http://www.cs.columbia.edu/~sedwards/classes/2012/gateway-spring/index.html

[2] Hp-20b repurposing project. Online http://www.wiki4hp.com/
doku.php?id=20b:repurposing_project, July 2008.

22

http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://www.wiki4hp.com/doku.php?id=20b:repurposing_project

	Introduction
	User Guide
	Social Implications
	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Software Details
	Lab 1: A Scrolling Display
	Lab 2: Scanning the Keyboard
	Lab 3: Entering and Displaying Numbers
	Lab 4: An RPN Calculator
	Lab 4+: An Infix Calculator

	Lessons Learned
	Criticism of the Course

