
ENGI E1112 Departmental Project Report:
Computer Science/Computer Engineering

Noah Stebbins, Nicholas Sun, Ga Young Lee, Luis
Ramirez December, 2012

Abstract

For Art of Engineering, our group wrote firmware for an HP 20b
calculator, allowing it to do more than display simple strings of
characters, but also run operations and carry out commands (e.g.
waiting for the user to enter a long number before returning a value).
Through a series of labs, we managed to go from modifying display to
defining algorithms that would define exactly what the calculator did.
As we went through the labs, we developed a better understanding of
the C programming language. We went from changing simple
parameters, to defining methods, and finally to working with structs
and pointers.

We programmed the HP 20b calculator to have a broader understanding
of Computer Science as a whole. While many classes are oriented at
teaching students simple syntax of a programming language, Art of
Engineering is actually geared towards implementing what you learn in
society. While we did not directly impact society in any way, we did
develop comprehension of C by applying it to an electronic device.
Thus, we took our first step as an engineer into building applications.

We built the HP 20b calculator with C through a series of four
laboratory experiments. For the first one we simply modified display
based on an integer argument. In the second one, we defined a method
by which the calculator could display a specific key that was being
pressed. In the third experiment we found a way for the calculator to
store a number and an operation into a struct, which could then be used
to perform operations. Finally, in the fourth experiment, we combined
the results of the first three labs to create a fully functional RPN
calculator.

1 Introduction

For our Art of Engineering class at Columbia University, we were
supposed to program an RPN calculator using C to get it to
perform simple operations for the user. While most of the code was
already written for us, the “display” modification part of the code
was up to us to implement. Thus, the actual code allowing us to
interact with the calculator’s processor was not altered by us, but
the desired behavior of the calculator was.

C was the language of choice, because it is a standard language for
most electronic devices. It is still widely used, and therefore, as an
engineer, it is important to learn. C also requires a comprehensive
understanding of proper syntax - one mistake can prove disastrous.
Thus, it is good for beginning programmers be- cause it
encourages good practices.

2 User Guide

The calculator’s display is rather standard and has been explained
in the summary of the Platform below. The keyboard uses a
process of analyzing highs and lows, which is also further
explained.

The calculator is an RPN calculator, which stands for Reverse
Polish Notation. The idea behind this is that you can represent
anything mathematically with- out using parentheses and by saving
keystrokes. The style of an RPN calculator, however, is not
conventional.

When entering computations, you must put in the first numerical
value and then press INPUT. Then you enter a second value and an
operation. The result is you get an evaluated mathematical
expression. Thus, putting in a 5, INPUT, 6, + will return a value of
11. This is counter-intuitive to us because we want to do 5, +, 6, =.
However, this is actually more efficient.

For complex situations like evaluating (3 + 5)/(7 + 6), you would
divide them into sub-expressions and then divide the two sub-
expressions at the very end. So you would enter a sequence of
commands identical to 3, INPUT, 5, +, 7, INPUT, 6, +, /. Notice
that the division operator is at the end. Running this in your
calculator will actually return the correct value of 0.6153846.

3 The Platform

The software used for the HP 20b calculator is based on entry-
system logic, which contains RPN and Algebraic and Chain
Algebraic software. There are over 220 built-in functions and
menus and prompts are included.

3.1 The Processor

Figure 1: The HP 20b

The HP 20b is little more than a keyboard and liquid crystal display
(LCD) connected to an Atmel AT91SAM7L128 processor. This
mouthful of a name, which I will abbreviate to SAM7L, was given
to it because it is part of Atmel’s AT91SAM series of chips, which
are all built around an ARM processor core (“AT” is for Atmel;
“SAM” is “smart ARM core;” 91 appears to be arbitrary). The 7L
series of microcontrollers are designed for low power (hence the

L), and the final 128 is a reminder that it includes 128K of flash
program memory.

Figure 2 shows a block diagram of the SAM7L chip. It looks
complicated, but is essentially a single standard processor
surrounded by memory and a wide variety of peripherals, most of
which we will not use. You should be aware of the system
controller, which, through software, controls the clock and power
supply of each peripheral. This makes it possible to save energy by
not powering on unneeded peripherals, but can also make a
peripheral appear not to work if you neglect to turn on its power.

3.2 The LCD Display

The LCD display of the calculator includes 1.5 lines by 12
characters and 3 exponent characters. There is a bottom line of 7
segments, and a scrolling top line of 8 characters.

The lcd_put_char7 function is the foundation to display on the
calculator. The function takes in two parameters, the first one a
character and the second one a number. The function then returns
the character at the given index numerical value. So putting ‘H’
and 0 as your two parameters would print H at the 0th value of the
calculator. This means that you would have a calculator displaying
H on the far left-hand side.

3.3 The Keyboard

The keyboard works as follows. Initially, all columns are set to a
low voltage, and then the rows are tested to see if they have a low
or high voltage. If a row is low as well then the column is set to
high and the position at that specific row and column value is
returned, allowing the user to see display for a corresponding
character.

4 Software Architecture

I have several files in my lab that aid in producing the final result
as a whole. The keyboard.h file is a template for the keyboard.c
file, which is in charge of how things are displayed and how they
are stored. The lcd.h file is a template for the lcd.c file, which is in
charge of mandating the laws of display. It is thanks to this file that
we can even see any output at all on our display. After all, the
computer needs to instruct the calculator on how it will display its
data.

The main.c file is responsible for executing everything else and
linking to everything else. It is thanks to the main.c file that we
have an interface by which we can easily see what part each file
plays in the final product. The Makefile sets the rules for
compilation, which we can then do with a simple MAKE FLASH
in the terminal.

Figure 2: A block diagram of the AT91SAM7L microcontroller

that is at the heart of the HP 20b

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC
PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

5 Software Details

In this section, I have included my group’s best solutions to the
questions posed by the labs and I will explain how they work, my
motivations for them, whether I would do anything differently, etc.

5.1 Lab 1: A Scrolling Display

Goal: display a numerical argument in the calculator

#include "AT91SAM7L128.h"
#include "lcd.h"

void clearScreen() {
 int i;
 for(i=0; i<11; i++){
 lcd_put_char7(' ',i);}
}

void printOutput(int number) {
 clearScreen();

 int counter, remain; char character;
 int position = 11;
 int absArg = abs(number);

 for(counter = absArg; counter >= 1; counter /= 10) {
 remain = counter % 10;
 character = '0' + remain;
 lcd_put_char7(character, position);
 position--;
 }

 if(number < 0) {
 lcd_put_char7('-', 0);
 }

 if(number == 0) {
 lcd_put_char7('0', 11);
 }
}

int main()
{
 lcd_init();

 printOutput(23444);
 printOutput(-0);

 return 0;
}!

Clear screen assigns empty spaces in every position in the screen.
So it makes the screen ready to accept the number.
After cleaning up the screen the variable takes the absolute value
of input number. In the for loop, the number is kept divided by
10 and the remainder is stored in the right most position until the
computer gets the one digit value of the highest digit number. For
example, when you enter 205, the first result from for loop is 5 and
it is shown in the right most position 11. And the remaining
number 20 goes through the same process and 0 in position 10 and
2 in position 9. In case when the input number is negative, the
number goes through the same process because the code takes the
absolute value of the number prior to the for loop.
To deal with the negative sign, lcd_put_char7('-', 0) displays '-' in
the left most position. Also, if input is zero, the screen shows 0 in
the rightmost position by lcd_put_char7('0', 11)

5.2 Lab 2: Scanning the Keyboard

char keyboard_key() {

int i; ��� int rowPosition = 2; ��� int colPosition = 5; // if nothing is pressed at that point

char keyboard[7][6] = {{’N’, ’Y’, ’V’, ’P’, ’F’, ’A’}, {’C’, ’R’, ’K’, ’B’, ’%’, ’C’},

 {’I’, ’(’, ’)’, ’O’, ’<’},
 {’^’, ’7’, ’8’, ’9’, ’%’},
 {’v’, ’4’, ’5’, ’6’, ’x’},
 {’s’, ’1’, ’2’, ’3’, ’-’},
 {’ ’, ’0’, ’.’, ’=’, ’+’}};
 //set all columns to high

for (i = 0; i < 7; i++) { keyboard_column_high(i);}

int j, k;

���for (j = 0; j < 7; j++) {

keyboard_column_low(j);

for (k = 0; k < 6; k++) {

if (!keyboard_row_read(k)) {return keyboard[j][k]; }

}

keyboard_column_high(j);

 }

}

The figure above shows my code for lab 2. ��� Keyboard_key() works
as follows: you first loop through all of the columns and you set
them all to high. Initially you assume the worst (i.e. that the value
you are trying to access is not in the calculator’s keyboard). Thus,
the rowPosition is set to two and the colPosition is set to five. You
then loop through all of the rows for each column. If the row is
also low, then you have to return both the value of the row and the
value of the column.

We then created a three-dimensional array of all of the possible
input values on a calculator and we return the element in that three-
dimensional array that has a row position and a column position
equal to that of the two low values.

This function shown is invoked by main.c and is located inside of
the keyboard.c file.

We tested it with a wide range of values. We saw what would
happen if you kept pushing down the button (it would keep
displaying) and we saw what would happen if you tried to hit two
values (only one would be displayed). Thus, we accounted for
error.

5.3 Lab 3: Entering and Displaying Numbers

NOTE: We did not have the chance to do a large portion of this
assignment so we did as much as we could and explain it to our
maximum ability

void keyboard_get_entry(struct entry *result)
{

 int entry=0;
 int negative = 0;

 for (;;) {
//make some loop that calls keyboard_key() to check if it is true so
as to see if whether a key is being pressed. While a key is
pressed keep looping through and calling keyboard_key() until it is
no longer being pressed, so once keyboard_key() is no longer true
and then take that value. Every instance of keyboard_key() should
be replaced by a variable initialized within the loop

 if (keyboard_key() >= 0 && keyboard_key() <= 9)
 {
 entry= entry * 10 + (keyboard_key() – ‘0’);
 result->number = negative ? -entry : entry;
 }
//check the cases that can be pushed
 else if (keyboard_key() == ‘~’) //if the plus minus sign is
pushed, make negative true.
{
 negative = 1;
 }
else if (keyboard_key() == '\r' || keyboard_key() == '+' ||
keyboard_key() == '-' || keyboard_key() == '*' || keyboard_key()
== '/') // if one of these are pressed exit and return what is in the
pointer
 {

 result->operation = keyboard_key();

 return;

 }

lcd_print_int_neg(negative, entry);

}

The user is going to enter a string of numbers which create one
large number by looping through some sort of display modification
where the numbers stay on the screen and allow for the addition of
other numbers

When you have finished typing the number that you desire, you
enter an operation. the program recognizes this operation and it
returns the function, storing the operation and the number in struct

These are passed to the main function where you can test that this
works correctly by displaying the number and the operation

6 Lessons Learned

In this lab I learned how to not only program in C, but how to
implement C on electronic devices, and that I feel, is the most
important thing I learned. Anybody can write a hello program in C,
but to actually use knowledge to construct a device is wholly
different.

For future students, I advise that you work with people who work
just as hard if not harder than you do, and make sure that everyone
in the team knows their role in the group. If someone has extensive
experience with C, have him explain to the other group members
what he has learned so they are caught up-to-speed. Leave no
group member behind. Have no group member do all of the work.

Honestly, I wish I knew in the beginning of class how to manage
my time. College is all about project-like assignments and
procrastination just does not work. The most important thing I feel
like I have learned is to start projects on the day they are assigned.
In the case of Art of Engineering, this means pushing the group
forward on the first day you start working on the lab. Instead of

being lazy in class since Art of Engineering is on Friday, it would
be wiser to just deal with the fact that you have class and start
working.

7 Criticism of the Course

I liked the fact that we were learning how to apply computer
science to an actual electronic device. Not only were we learning a
new programming language, but we also had the chance to
implement it on a calculator to define the behavior of the
calculator.

I did not like the large leaps between the labs. In my opinion, the
labs were too difficult for beginning C programming. We spent a
majority of our time just trying to figure out what we were
supposed to do, and when we finally understood what the lab
directions were asking, we were behind.

In the future, I would recommend making more labs, but having
them have smaller requests. For example, instead of creating a
fully functional RPN calculator in four labs, you could make it six
labs, but have each lab designed to complete in about a week. That
way, presentations would be continuous and momentum for
completing more work would be higher.

The code reviews were somewhat helpful. The feedback was very
good and I learned a lot about minimizing code and making code
more readable while maintaining overall function. I also learned
about the balance of commenting a program thanks to feedback.
Simpler labs would allow for simpler presentations.

	

