
ENGI E1112 Departmental Project Report:
Computer Science/Computer Engineering

Arushi Gupta
Jake Kazimir

Serena Shah-Simpson

December, 2012

Abstract

The purpose of this final report is to present the assigned project for the
Computer Science project lab of ENGI E1112. For this project, we were
required to write firmware for an HP 20b calculator that had been cleared of
program code. The project was split up into four different labs that consisted
of getting the calculator to display numbers on the screen and do calcula-
tions. We completed the first two labs, which dealt with getting numbers
stored and displayed correctly.

This report begins with a thorough description of how the calculator is
meant to be used, when correctly programmed. The report then goes on to
describe elements of the hardware in the calculator and gives an in-depth
break down of the software that was written for each lab assignment that we
completed.

1 Introduction
In general, when people refer to computers, they are talking about personal com-
puters such as desktops or laptops. However, these computers make up only a
small fraction of the computers in existence. Computers exist almost everywhere
in developed countries. They are present in the majority of electronic devices pur-
chased by consumers, as embedded systems. These embedded systems are created
to perform specific tasks, and so may not seem very relatable to what computers
are generally seen as- user-friendly and flexible.

1

The problem that we were faced with was that an HP 20b calculator was wiped
clean of all firmware that related numbers entered on the keyboard to memory
and display. Using the C language, we wrote some code to reinstate these pro-
cesses. We were able to transfer our code from the computer (where we wrote
it) to the processing chip of the calculator to become embedded programming.
This embedded programming instructed the calculator what to do under certain
circumstances. Our writing process is detailed in the sections below, along with a
description of the workings of an HP 20b calculator.

2 User Guide
2.1 Turning on the calculator

To turn the calculator on and off, press the on/ce (8) key.

2.2 Entering Numbers

Unfortunately, currently the calculator prints numbers several times per button
push, but the following describes our intended use for the calculator after finishing
all labs. Pressing a key will display the corresponding symbol on the lcd. Numbers
and symbols will be displayed next to each other unless the user presses input or
exceeds the 12 character display. If the user exceeds the 12 character limit, the
screen does not display additional numbers and will not change until the user
presses input(4/5). To enter a negative number, press the ’-’ (9) key and then enter
the desired number.

2.3 Clearing the Screen

Input can be used to put the number onto the stack and will clear the screen.

2.4 Performing operations

We were not able to complete Lab 3 and Lab 4, but our intention was to have
the backspace key remove the rightmost character on the display. The user would
input numbers and put them onto the stack by either pressing the multiplication,
division, addition, subtraction, or equals symbol(9). Pressing one of these sym-
bols would clear the screen of characters and display the operation which was
most recently called. The calculator would then clear the screen and display the
results of the operation.

3 The Platform
3.1 The Processor

The Atmel AT91SAM7L128 processor (aka SAM7L chip) is the embedded pro-
cessor of this calculator. It was built around a 32-bit ARM7 RISC processor

2

Figure 1: HP 20b Keyboard & Display Reference [?]

core to perform as a low energy processor in embedded systems, as described by
the ARM7TDMI technical reference manual [?]."AT" refers to Atmel, "SAM" to
"smart ARM core," and "128" to the flash memory, 128 Kilobytes.

The processor of the SAM7L chip is located at the top of the block diagram
shown in Figure 2, and is surrounded mainly by memory and peripherals. The
chip contains a system controller (located at the left hand side of the chip in the
schematic), that controls the clocks and power supply of the processor’s peripher-
als in order to ensure that each peripheral gets power only when it needs it.

3.2 The LCD Display

The calculator communicates with the user through an LCD display screen, which
is connected to the SAM7L chip. The display consists of two lines. We did not
write firmware for the first line, which under HP’s programming showed operation
status and symbols up to eight characters. The bottom line, which we did write
code for, can show up to 12 digits, namely the numbers entered by the user and
the results from performing a calculation.

For this project, we were provided with the following library functions:

• lcd_init: Turned on the display’s power supply

• lcd_put_char7: Displayed a specified character or number (entered in ASCII
code) in a specified position on the LCD display

3

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 2: Diagram of the AT91SAM7L128 processor that controls the functioning
of the HP 20b, from Atmel’s released datasheet [?]

.

4

3.3 The Keyboard

The HP 20b’s keyboard is connected to pins attached to the SAM7L chip. Figure 3
shown below details the row and column wires that are shorted by the keys. When
a certain key is pressed, both the row and the column of the key will be shorted,
and so then a certain pair of pins are shorted, one for the column, one for the row.
The state of the pins is read by software in a peripheral and then interpreted as a
number or command to the firmware of the processor.

We were provided with these library functions for the keyboard:

• keyboard_init: Set all the columns high with pull-up resistors on the rows

• keyboard_column_high: Set a specified column high

• keyboard_column_low: Set a specified column low

• keyboard_row_read: Returned true if specified row was high, return false if
low

4 Software Architecture
Keyboard_key returns an integer if a key is pressed. DepressedKey takes this inte-
ger as input and returns it only when the key as gone from being pressed to being
not pressed. Print_screen takes the value from depressedKey and prints the appro-
priate symbol to the display. This process is repeated inside an infinite loop in the
main method.

5 Software Details
Software Details includes cleaned-up listings of every bit of code we wrote for
each lab. Followed by each code segment is a brief paragraph explaining the
intent of each block of code as well as other comments. Unfortunately, our final
code would not run with all the previous coding. We therefore began to condense
the code and keep only what was necessary. The beginnings of that code are the
last block of code in this segment.

5.1 Lab 1: A Scrolling Display

In this lab we were instructed to edit hello.c and create a function that takes an
integer argument and displays it in decimal on the calculator. We had up to 12
digits to work with.

Figure 4 shows our code for lab 1. Main simply calls our print function on a
specific integer number. It can be positive or negative, however, the only constraint
is that it must be an integer value. The program immediately clears the previous

5

Figure 3: Diagram of the keyboard row/column wiring
.

6

int main(){
lcd_init();
printFunction(-123523);
return 0;

}
void printFunction(int NUM) {
clearScreen(); //clear screen
int num_position [11]; //int array to hold nums
int n; //initialize index for printing NUM
int x; //initialize index for storing NUM
int ASCII_CORRECTION = 48; //correction
if(NUM<0){
lcd_put_char7(’-’,0); //place negative sign
NUM=-NUM;

//make positive
}

x=1;
n=1;

while(NUM >= 1){
num_position[x] = NUM%10; //next char
NUM = NUM/10; //since int will cut off
x++; //add 1 to index

}
if(NUM==0){
lcd_put_char7(0+ASCII_CORRECTION, 11);

}
for(n; n<x; n++){
lcd_put_char7(num_position[n]+ASCII_CORRECTION,12-n); //print

}
}

Figure 4: Our solution for Lab 1: displaying numbers on the LCD screen

7

entry on the screen using the clearScreen function. Once the number has been
declared and the screen has been cleared, printFunction decides if the number is
positive or negative. If the number is negative, printFunction will input a negative
sign into slot 0 of the calculator screen. The most important part of the code
is the while statement (while(NUM >= 1)) because it breaks up the number into
individual digits. It does this using the modulus function and then setting the
number equal to the number divided by 10. This will truncate the number because
NUM is defined as an integer. The modulus function will get the farthest digit
to the right. We then store this digit into an array of integers. For example:
NUM =1234, NUM %10=4, NUM /10=123, 4 is stored in the array, NUM becomes
123, x=x+1 (x is simply used to keep track of the size of the array). The while
loop will keep iterating until NUM is less than one.

One flaw with this design is that the number 0 will not print. Therefore, we
inserted an if-statement to catch this error (if(NUM ==0)) and then print zero. A
key note to this part is that the program does not store zero in the array. Therefore
the for -loop will not execute. The final step in the program is to print the number.
We do this using a for -loop (for (n; n<x; n++)) and the array of digits. We print
the first number (first modulated into array) into the 12th spot, then the 11th, and
so on and so forth. This will continue as long as the array still contains another
number (can tell by the index x).

5.2 Lab 2: Scanning the Keyboard

In Lab 2, we had to find a way to read the keyboard and display which key is
being pressed. To do this we began thinking of ways to scan the keyboard and
thought it best to use an infinite loop (this proved later to be a bad method) that
would continuously scan the rows and columns looking for which key has been
pressed. We use two methods keyboard_key which identifies the key being pressed
and pressed_key which assigns a value to that key.

The code in Figure 5 allows the calculator to know which button has been
pressed. It continuously scans the keys one row at a time. Initially all the rows and
columns are set to high. Then, the column being checked is set to low. If a button
in this column is pressed, its row will also become low. Therefore, we can tell
which button has been pressed because the row and column will be low (similar
to cartesian coordinates). We then save these coordinates as dummy variables. In
the method pressed_key, we use the 2x2 array of integers to discover the value
of the pressed key and print it. When nothing is being pressed, the screen will
display “nada”. Unfortunately, this program will have the number continuously
flash because it constantly clears the screen and checks to see if it is being pressed

8

int keyboard_key(){
int key[2]={-1,-1}; //key coordinate array to be returned
int j=0;
int i=0;
for (;;) { //infinite loop
keyboard_init(); //set all to high
for(j=0; j<7; j++){

keyboard_column_low(j); //"look here" column low
for (i = 0 ; i < 6 ; i++){ //iterate through rows
if (!keyboard_row_read(i)){
key[1]=i; //i=row
key[0]=j; //j=column

}
}
keyboard_column_high(j); //reset column high

}
int returnkey=key[1]*10+key[0]; //keeps track of column, row
if(key[1]!=-1){
return returnkey; //returns [column, row] as an integer

}
else{
lcd_print7("NADA"); //nothing is being pressed

}
}
}
void pressed_key(int x){

int i=x/10; //i is row
int j=x%10; //j is column
int CALC_KEYBOARD[7][6]={{0,0,0,0,0,0},

{0,0,0,0,0,0},
{0,0,0,0,0,0},
{0,7,8,9,0,0},
{0,4,5,6,0,0},
{0,1,2,3,0,0},
{0,0,0,0,0,0}};

int y=CALC_KEYBOARD[j][i];
lcd_put_char7(y+’0’, 11); //prints
clearScreen(); //clears screen

}

Figure 5: Our solution for lab 2: scanning the keyboard

9

again. Not being able to hold the value on the screen will become an issue later.

5.3 Lab 3: Entering and Displaying Numbers

Due to time constraints and several problems with our code, we were unable to
complete Lab 3. A major problem with our code is that it does not stop recording
what has been pressed. By this we mean that if 4 is pressed, 44444 will appear
on the calculator screen. This is because the calculator is extremely fast, and our
button pressing is extremely slow in comparison. The problem with our code is
that it is running an infinite for-loop and there is no “stop” condition that lets the
keyboard know that the key is still depressed. We tried to solve this problem by
writing the function depressedKey. Unfortunatley, this did not work. We then
began to add a struct which complicated things further. After exponentially in-
creasing the problem with our code, we were forced to completely restart from
Lab 2.

During the last two weeks we decided to completely rewrite our code (though
not 100% from scratch). We decided simply have one method which would handle
when a key is pressed and print it. We were then going to write individual methods
as necessary for Lab 4 depending on what key was being pressed and the function
that was going to be performed. Figure 6 shows what we came up with, though
we should note that it is not complete and was never tested.

Rather than have a separate “getter” and “setter” function, we have combined
keyboard_key and pressed_key. Therefore, once the key has been pressed we will
know immediately know what it is.

5.4 Lab 4: An RPN Calculator

We did not begin Lab 4, but if we had completed Lab 3, Figure 7 shows a very
rough outline as to our course of action in coding. Knowing when a key was
pressed, we could construct a series of if/elseif/else conditions in which we can
have it display a number, know to multiply two numbers, save a number, etc (all
calculator functions). We can handle all these by simply writing methods for each
case and have the method be called in the if/elseif/else statements. Unfortunately,
the pressed key problem was not solved.

The ouline shown in Figure 7 should work because it will execute the find key
method only while the key is not being held down. While pressed, the program
will do nothing. Given more time, we believe that we could have completed this
work.

10

void keyboard_key(){
int j=0;
int i=0;
int x=-1;
int y=-1;
for (;;) { //infinite loop

while(!keyboard_init());
keyboard_init(); //set all to high
for(j=0; j<7; j++){
keyboard_column_low(j); //"look here" column low
for (i = 0 ; i < 6 ; i++){ //iterate through rows
if (!keyboard_row_read(i)){
x=i; //i=row
y=j; //j=column
break; //exit for loop

}
}
keyboard_column_high(j); //"look here" column high

}
int count=0;
if (x < 0 && y<0)

return;
else if(x==2 && y==5){

//delete (reset number)
}
else if((x>=1 && x<=3)&&(y>=3&&y<=5)){

//print number
}
else if (asdlf;asd;lf){

//do math
}
else {

count = count+1;
number[11-count]=CALC_KEYBOARD[y][x];;
int z=0;
for(z;z<11;z++)
{
lcd_put_char7(number[z]+’0’, z); //prints

}
}

}
}

Figure 6: Our second revamped atempt at Lab 3

11

While(pressed) ;
While(unpressed){

//Find key
//Do function/print to screen

}

Figure 7: Possible course of action for Lab 4

6 Lessons Learned
Choosing the best return type for a method can make writing later methods a lot
easier; having keyboard_key return an integer made it difficult to display a number
only once per key push. Having keyboard_key return a Boolean would have made
more sense, as keyboard_key should really keep track of the state of whether a
key is being pressed, in other words, if it is being pressed or depressed. Having
pressed_key return an array of characters also made it easier to print than if we
had returned an array of integers.

Always have a working piece of code which can test if the code is buggy or
if the calculator battery died. Remember to check all the links connecting the
calculator to the computer before assuming that the battery died. The longer the
code and the more necessary it is to copy paste, the greater the likelihood that there
is a simpler solution. Ultimately trying to just get the calculator to do something
is less fruitful than planning carefully the design for the code. Remember to look
at edge cases. For example, what happens if the user is already holding down a
key when keyboard_key is called? It is much easier to unit test smaller methods
than figure out everything that went wrong at the end.

7 Criticism of the Course
This course was very entertaining, fun, and rewarding. Having the ability to pro-
gram from scratch and see our code begin to work on an actual device yielded a
huge feeling of accomplishment (though on the other end of the spectrum, compil-
ing errors were infuriating). The labs were difficult but reasonable, as the instruc-
tions were quite clear. Given proper programming technique it would be apparent
how they would all fit together to form a semi-functional calculator. The code re-
views were quite helpful in that it was useful to see how other people would break
up the problems. Also taking the time to explain our code forced us to re-assess
certain areas and make changes to our code as necessary.

We did end up spending a lot of time simply trying to connect the calculator

12

the computer. At times it was difficult to tell if the calculator was plugged in,
since the light on the JTAG connector did not always light up, so more consistent
equipment would have been helpful. Additionally, a little more background in
C/C++ programming would have been extremely useful for these assignments,
since we spent a lot of time looking online for the proper syntax/semantics. Other
than these issues, there were no major problems or concerns. All in all, we really
enjoyed this course and would not change anything major.

13

	Introduction
	User Guide
	Turning on the calculator
	Entering Numbers
	Clearing the Screen
	Performing operations

	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Software Details
	Lab 1: A Scrolling Display
	Lab 2: Scanning the Keyboard
	Lab 3: Entering and Displaying Numbers
	Lab 4: An RPN Calculator

	Lessons Learned
	Criticism of the Course

