
Programming a
Calculator

-Ashley Kling (ask2203), Joseph Thompson (jot2102), Phillip Godzin (pgg2105)

● Originally 2 line display

● User is able to toggle RPN
on and off

● Calculator is often
repurposed and
reprogrammed due to open
software.

● uses Atmel AT91SAM7L128
30 MHz processor

The HP 20b

● First commercially available in 1963

● Parenthesis and brackets are unnecessary

● Instead has operations follow the numbers

they are operating on

Reverse Polish Notation

Features of RPN

● Makes use of a stack to store operands

● Each operator only works on two numbers

● Automatic storage of results allows for more
complicated operations

● Operations cause calculations to occur
immediately

Example

(1+2)*3+4 is 1,2+3*4+ . Evaluate to 13.
1+2*(3+4) turns to 1,2,3,4+*+ . Evaluate to 15

image of kdfp from: http://www.chezfred.org.uk

image of hp 35 from: http://www.thimet.
de/calccollection/calculators/HP-35/Contents.htm

More on the stacks

Here is a demonstration of the stacks for the
operation 4(A+B).

image from: http://www.theteacher.
info/websites/ocr/WebPages/F453_Advanced/ConvertPolish/ConvertPolish.html

Lab 1- Display

● Number appears on right side
● Create a counter to keep track of negative

Lab 1void display(int num)
{
 clearScreen(); //gets rid of any current values on the screen
 int temp = num;
 const int ASCII = 48; // the ASCII value of 0 to be able to use numbers as chars
 int i = 0; // used for index
 int remainder = 0; // holds a single digit
 // If the number is 0, print it out and exit
 if (temp == 0){
 lcd_put_char7('0', 11);
 return;
 }
 // Turns a negative number into a positive number
 if (num < 0)
 num = -num;
 while(num!=0)
 {
 remainder = num % 10; // the last digit of num
 lcd_put_char7(remainder + ASCII, 11-i); // places digit in rightmost available index
 num = num/10; // Divides number by 10 for the next iteration
 i++;
 }
 // If the original number is negative, place a minus sign at the index immediately to the left of the first
digit
 if (temp < 0)
 lcd_put_char7('-', 11-i);
}

Lab 2

To figure out what is pressed:
● Set all columns high
● Set column you want to test low
● Loop through rows. If a row is low, that is the

button being pressed
● The pressed key's row and column numbers

are returned
Other implementations:
● 2d matrix for integers
● Defined operations above the 2d matrixes

Lab 2- Finding Pressed Keys
int keyboard_key()
{
 int c = 0;
 int r = 0;

 for(c; c<7; c++)
 {
 r = 0;
 keyboard_column_low(c);
 for(r; r<6; r++)
 {
 if(!keyboard_row_read(r))
 {
 return key[c][r];
 }
 }
 keyboard_column_high(c);
 }
 return NOTHING; // Nothing pressed
}

Lab 2- Other
#define X 99 // Nothing important is pressed
// The following buttons are pressed
#define INPUT 16
#define NEGATE 19
#define RETURN 20
#define DIVIDE 15
#define MULTIPLY 14
#define SUBTRACT 13
#define PLUS 12
#define EQUALS 11

//2D matrix representing the rows and columns of the keyboard
int const key[7][6] = {
 {X,X,X,X,X,X},
 {X,X,X,X,X,X},
 {INPUT, X, X, NEGATE, RETURN, X},
 {X, 7, 8, 9, DIVIDE, X},
 {X, 4, 5, 6, MULTIPLY, X},
 {X, 1, 2, 3, SUBTRACT, X},
 {X, 0, X, EQUALS, PLUS, X}
 };

Lab 3 - Storing number and operation

● Used a boolean to differentiate between a number
and a function being pressed

● The number and operation pressed are stored in a
structure

● If the +/- key is pressed, a variable that is initially 1
is multiplied by -1, then later the number is
multiplied by that variable

● If no number is pressed before an operation is
pressed, the max integer is returned.

● Numbers that are entered are printed on screen as
they are pressed

Lab 3
void keyboard_get_entry(struct entry *result)
{
 int num_pressed = 0; //boolean to see if an operation was pressed before a number
 int pos = 1; //determines if number is positive or negative: mult by -1 when +/- is
pressed
 int tempOp = ' ';
 result->operation = ' '; //Initially no operation
 result->number = 0;
 int keyPressed; //Stores the current key being pressed
 while(((*result).operation == ' ')) //While operation + input has not been pressed
 {
 keyPressed = keyboard_key();
 if(keyPressed == NEGATE) //toggle sign of the number
 pos *= -1;
 if(keyPressed >= 0 && keyPressed < 10 && (*result).number < INT_MAX / 10)
//number is being pressed
 {
 result->number = (*result).number * 10 + keyPressed;
 num_pressed = 1; // a number has been pressed
 }

else if (keyPressed >= PLUS && keyPressed <= DIVIDE) //operation being pressed
 {
 tempOp = keyPressed; //store operation
 }
 if(keyPressed == INPUT){
 result->operation = tempOp; //only set the operation once input has been pressed
 if(num_pressed == 0) //no number has been pressed
 result->number = INT_MAX;
 else
 result->number = (*result).number * pos;
 }
 if((*result).number != INT_MAX)
 lcd_print_int((*result).number);
 else if ((*result).number == INT_MAX){
 lcd_put_char7('M',9);
 lcd_put_char7('A',10);
 lcd_put_char7('X',11);
 }
}

Lab 4

● One pointer to the open space in an array
with the lowest index
○ used to emulate a stack, in which numbers, both

inputted and calculated are stored
○ to stay true to the original implementation of the

calculator, the array has a size of 4

● +, -, *, and / functions implemented
○ when a function is pressed, the operation is

immediately applied to the two numbers nearest to
the stack pointer

 else if (keyPressed >= INPUT && keyPressed <= DIVIDE) //operation being pressed
 {
 result->operation = keyPressed;
 if(num_pressed == 0) //no number has been pressed
 result->number = INT_MAX;
 else
 result->number = (*result).number * pos;
 }

keyboard_get_entry is changed to accommodate a number and input being
pressed without an operation pressed

Populating stack and executing
operations:

void executeOp(int op, int stack[], int stack_size)
{
 int num1 = stack[stack_size-2];
 int num2 = stack[stack_size-1];

 int result = 0;
 if (op == PLUS)
 result = num1+num2;
 else if (op == SUBTRACT)
 result = num1-num2;
 else if (op == MULTIPLY)
 result = num1*num2;
 else if (op == DIVIDE)
 result = num1/num2;
 stack_size--;
 stack[stack_size] = result;
 lcd_print_int(result);

}

In main.c:

int stack[6];
int stack_size = 0;

while(stack_size < 6){
 keyboard_get_entry(&entry);
 if(entry.number != INT_MAX)
 {
 stack[stack_size] = entry.number;
 stack_size++;
 }
 if(entry.operation != INPUT)
 executeOp(entry.operation, stack,

stack_size);
}

Skills Gained

● Ability to communicate semi-effectively

● Dividing problems into independent chunks

● Integration of hardware and software

● Working with colleagues who possess
varying levels of programming skill

● Check your wires!

