
Repurposing an HP Calculator
Lab 1: Hello World

Computer Science and Computer Engineering Gateway Project

Stephen A. Edwards

Fall 2012

Abstract
In this project, youwill write new�rmware for anHP 20b calculator.
�is is an example of embedded programming—coding so�ware for
something that does not, and should not, appear to be a computer
in the traditional sense, yet is one at its core. �e plummeting cost
of integrated circuits has made such embedded systems ubiquitous,
and this trend promises to continue. �e challenges of designing
such systems run the gamut from traditional electrical issues such as
sensor noise and power consumption all the way to high-level com-
puter science problems such as e�cient algorithm design to human
factors engineering. You will experience all of these, and learn some
standard solutions, while performing this project.

Introduction
In 2008, over ten billion processor chips were manufactured and
sold1—more than one for every human on earth. While we are all fa-
miliar with the heavilymarketed high-end Intel andamd processors
residing within our desktop and notebook computers, these repre-
sent only about two percent of the total. �e rest are so-called em-
bedded processors residing in familiar objects such as cell phones
and mp3 players, but many end up in far less likely places such as
cars, televisions, dvd players, and toys. Once, I even found a mi-
croprocessor in my breakfast cereal.2 �ese things are everywhere,
and somebody has to program them.

In this project, you will do some embedded programming by cre-
ating new �rmware for the hp 20b calculator (Figure 1). Unlike
most consumer products, this onewas “opened” byhp: they provide
schematics and a so�ware development kit, so it is fairly straight-
forward to turn this calculator into something it wasn’t originally
designed to be. For example, I turned it into a serial terminal in-
tended as a remote control for low-cost power distribution systems
designed for third world countries.3

�e hp 20b
�e hp 20b is little more than a keyboard and liquid crystal display
(lcd) connected to an Atmel at91sam7l128 processor. �is mouth-
ful of a name, which I will abbreviate to sam7l, was given to it be-
cause it is part of Atmel’s at91sam series of chips, which are all built
around an arm processor core (“at” is for Atmel; “sam” is “smart
arm core;” 91 appears to be arbitrary). �e 7l series of microcon-

1Michael Barr. Real men program in C. Embedded System Design, August 1st,
2009. http://www.embedded.com/columns/barrcode/218600142.

2Xbox 360 “mini games” in Apple Jacks cereal:
http://www.youtube.com/watch?v=jUNsQFG_5Pk

3Prof. Vijay Modi of the mechanical engineering department is spearheading
such a project. See http://modi.mech.columbia.edu/.

Figure 1: �e front and back of the hp 20b calculator. I added the
jtag header and power connector so we could develop so�ware on
these without draining batteries.

trollers are designed for low power (hence the l), and the �nal 128
is a reminder that it includes 128K of �ash program memory.

Figure 2 shows a block diagram of the sam7l chip. It looks com-
plicated, but is essentially a single standard processor surrounded by
memory and awide variety of peripherals, most of whichwewill not
use. You should be aware of the system controller, which, through
so�ware, controls the clock and power supply of each peripheral.
�is makes it possible to save energy by not powering on unneeded
peripherals, but can also make a peripheral appear not to work if
you neglect to turn on its power.

For this project, the two most interesting peripherals are the lcd
controller, which generates the complex acwaveforms necessary to
drive the calculator’s multiplexed lcd display; to so�ware, the lcd
appears as a series of memory locations whose bits control individ-
ual lcd segments.

1

http://www.embedded.com/columns/barrcode/218600142
http://www.youtube.com/watch?v=jUNsQFG_5Pk
http://modi.mech.columbia.edu/

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 2: Block diagram of the at91sam7l chip. �is consists of an
arm7tdmi processor core surrounded bymemory, a system (clock)
controller, an lcd controller, and a variety of other peripherals.
Source: Atmel. Figure 3: Connecting to the development ports on the back of the

HP 20b calculator. Note that the jtag connector extends beyond
the header.

What the heck is a jtag?
We will communicate with the processor through a jtag4 port,
which is built into the sam7l. �e 20b’s circuit board has a con-
venient place to solder a connector that bring out the jtag signals,
which I have already done for you.

Our development environment consists of Linux workstations
with jtag adapters connected to theusb ports. On theworkstations,
we are using a so�ware package called “OpenOCD”5 that commu-
nicates to the sam7l cpu through usb and jtag.

Figure 3 show how the hardware works. Plug the 20-pin connec-
tor onto the calculator’s jtag connector making sure to have the red
wire (pin 1) on the le� when you are looking at the back of the cal-
culator. �e calculator’s connector has only 16 pins; make sure the
jtag connector extends past the pins on only the right side. �e un-
connected four pins do not do anything we care about.

Compiling and Running “Hello”
Download the lab1.tar.gz �le from the class webpage and unpack it:6

$ tar zxf lab1.tar.gz
$ cd lab1
$ ls -F
AT91SAM7L128.h crt0.S hello.c lcd.h openocd.cfg
board/ flash.lds lcd.c Makefile target/
$

�is contains all the rules and scripts to compile the program and
download it to the calculator. See Table 1 for a list of the �les and
what they do. First compile the program into a form to be down-
loaded by invoking themake program:

$ make lab1.hex
arm-linux-gnueabi-gcc -Wall -Dat91sam7l128

-mcpu=arm7tdmi -marm -c crt0.S
arm-linux-gnueabi-gcc -Wall -Dat91sam7l128

-mcpu=arm7tdmi -marm -c hello.c
arm-linux-gnueabi-gcc -Wall -Dat91sam7l128

-mcpu=arm7tdmi -marm -c lcd.c
arm-linux-gnueabi-gcc -nostartfiles -Wl,--gc-sections
-static -Tflash.lds -o lab1.elf crt0.o hello.o lcd.o

arm-linux-gnueabi-objcopy -O ihex lab1.elf lab1.hex
$

�ere are a lot of magic incantations at work here, but broadly,
this compiles the crt0.S, hello.c, and lcd.c �les into corresponding
binary .o �les, links them together to produce lab1.elf, then trans-
forms that into the loadable lab1.hex �le.
�e make utility is a powerful tool for compiling programs. If

youmodify any of the �les and typemake lab1.hex again, it will only
repeat the steps that are necessary. See the contents of theMake�le
for more details.

Once you’ve compiled the hello program, download it to the cal-
culator by typingmake �ash.
If you see the following, the jtag adapter probably isn’t properly

connected to the workstation. Check that it is attached to the usb
cable and that the cable is plugged into the computer.

4�e Joint Test Action Group originally developed this protocol for testing
printed circuit boards. Today, virtually every microcontroller has a jtag port for
development and debugging.

5Open on-chip debugger: http://openocd.berlios.de/web/
6Here, I’m using tar, the Tape ARchiver program; the graphical File Roller pro-

gram will also work.

Figure 4: Running the “Hello” program

$ make flash
openocd -f openocd.cfg \
...
Error: unable to open ftdi device: device not found
Command handler execution failed
$

If you get the following error, the jtag adapter wasn’t able to es-
tablish communication with the sam7l chip in the calculator.

$ make flash
openocd -f openocd.cfg \
...
Error: JTAG scan chain interrogation failed: all ones
Error: Check JTAG interface, timings, target power, etc.
...
$

�is error occurs if the calculator isn’t properly connected to the
jtag adapter with the 20-pin ribbon cable, if the calculator doesn’t
have power (press the on/ce button and check the power connec-
tor), or if the sam7l chip is sleeping. �e latter may occur if the cal-
culator still has its stock �rmware (i.e., still behaves ashp intended);
holding down a calculator key keeps the processor awake to work
around this problem.

If all goes well, your calculator should look like Figure 4 and you
should see a lengthy series of commands and comments that looks
roughly like

$ make flash
openocd -f openocd.cfg \
...
Info : JTAG tap: at91sam7l128.cpu tap/device found:

0x3f0f0f0f (mfg: 0x787, part: 0xf0f0, ver: 0x3)
...
target halted in ARM state due to debug-request,
...
wrote 1120 bytes from file lab1.hex
...
shutdown command invoked
$

http://openocd.berlios.de/web/

Table 1: Files in lab1.tar.gz

Make�le Rules for compiling and downloading the program to the calculator. Add source �le names here.

hello.c �e main program: initialize the lcd and display a string. Edit this �le to add functionality.
lcd.c lcd-related functions and data. �is you may want to read.
lcd.h Externally visible interface to lcd.c
AT91SAM7L128.h Addresses of every peripheral in the sam7l chip
crt0.S arm assembly code that sets up the C runtime environment, mostly the stack
�ash.lds Linker script: how and where to put the program in (�ash) memory

openocd.cfg OpenOCD con�guration �le, including rules for writing to the on-chip �ash memory
board/hp-20b-calculator.cfg OpenOCD information about the hp 20b, mostly that it contains a sam7l chip
target/at91sam7l128.cfg OpenOCD information about the sam7l chip: the location of the �ash memory

Here I’ve excerpted the relevant lines. �e “jtag tap” line in-
dicates it was able to communicate with and establish the identity
of the processor. �e “target halted” means the openocd tool was
able to instruct the processor to halt so it could download a �le to
it, which the “wrote” message indicates. Finally, we disconnected
OpenOCD, indicated by “shutdown command invoked.”
What To Do
1. Follow the instructions in the previous section to compile and

download the sample program onto the calculator.

2. Edit hello.c and create a function that takes an integer argument
and displays it in decimal on the calculator. You have up to 12
digits to work with. Compile and download your program to
the calculator and show us that it works. Test it with a variety
of numbers, e.g., 0, −1, 1, 42, 12572, −123523.

3. When you’re happy with your display-a-number function,
make sure your names are in the .c �le and submit it via
CourseWorks. Only one submission per group is necessary.

	Introduction
	The hp 20b
	What the heck is a jtag?
	Compiling and Running ``Hello''
	What To Do

