Fundamentals of Computer Systems Sequential Logic

Stephen A. Edwards

Columbia University
Spring 2012

State-Holding Elements

Bistable Elements

Equivalent circuits; right is more traditional.
Two stable states:

A Bistable in the Wild

This "debounces" the coin switch.
Breakout, Atari 1976.

SR Latch

SR Latch

R
S -
Q Set
\bar{Q}

SR Latch

R

Q
Hold, State 1
\bar{Q}

SR Latch

Hold, State 1

SR Latch

SR Latch

SR Latches in the Wild

Generates horizontal and vertical synchronization waveforms from counter bits.
Stunt Cycle, Atari 1976.

D Latch

inputs outputs

C	D		Q	\bar{Q}
0	X	Q	\bar{Q}	
1	0	0	1	
1	1	1	0	

A Challenge

A simple traffic light controller.
Want the lights to cycle green-yellow-red.

Does this work?

Positive-Edge-Triggered D Flip-Flop

The Traffic Light Controller: A second try Let's try this again with D flip-flops.

CLK___
R -
Y__
G \qquad

The Traffic Light Controller: A second try Let's try this again with D flip-flops.

The Traffic Light Controller: A second try Let's try this again with D flip-flops.

The Traffic Light Controller: A second try Let's try this again with D flip-flops.

The Traffic Light Controller: A second try Let's try this again with D flip-flops.

The Traffic Light Controller with Reset

CLK
RESET
$R-$
Y
G

The Traffic Light Controller with Reset

D Flip-Flop with Enable

What's wrong with this solution?

Asynchronous Preset/Clear

The Traffic Light Controller w/ Async. Reset

The Synchronous Digital Logic Paradigm

Gates and D flip-flops only

Each flip-flop driven by the same clock

Every cyclic path contains at least one flip-flop

Cool Sequential Circuits: Shift Registers

Universal Shift Register

S_{1}	S_{0}	Q_{3}	Q_{2}	Q_{1}	Q_{0}
0	0	R	Q_{3}	Q_{2}	Q_{1}
0	1	D_{3}	D_{2}	D_{1}	D_{0}
1	0	Q_{3}	Q_{2}	Q_{1}	Q_{0}
1	1	Q_{2}	Q_{1}	Q_{0}	L

$\begin{array}{lll}S_{1} & S_{0} & \text { Operation }\end{array}$
0 O Shift right
01 Load
10 Hold
$1 \quad 1$ Shift left

Cool Sequential Circuits: Counters

Cycle through sequences of numbers, e.g.,

$$
\rightarrow 00 \rightarrow 01 \rightarrow 10 \rightarrow 11
$$

The 74LS163 Synchronous Binary Counter

Flip-Flop Timing

Setup Time: Time before the clock edge after which the data may not change

Flip-Flop Timing

Setup Time: Time before the clock edge after which the data may not change

Hold Time: Time after the clock edge after which the data may change

Flip-Flop Timing

Setup Time: Time before the clock edge after which the data may not change

Hold Time: Time after the clock edge after which the data may change

Flip-Flop Timing

Setup Time: Time before the clock edge after which the data may not change

Hold Time: Time after the clock edge after which the data may change

Timing in Synchronous Circuits

t_{c} : Clock period. E.g., 10 ns for a 100 MHz clock

Timing in Synchronous Circuits

Sufficient Hold Time?

Hold time constraint: how soon after the clock edge can
D start changing? Min. FF delay + min. logic delay

Timing in Synchronous Circuits

Setup time constraint: when before the clock edge is D guaranteed stable? Max. FF delay + max. logic delay

Clock Skew: What Really Happens

Sufficient Hold Time?

CLK_{2} arrives late: clock skew reduces hold time

Clock Skew: What Really Happens

Sufficient Setup Time?

CLK K_{1} arrives early: clock skew reduces setup time

