Fundamentals of Computer Systems Thinking Digitally

Stephen A. Edwards and Martha Kim

Columbia University

Spring 2012

The Subject of this Class

0

The Subjects of this Class

0 1

But let your communication be, Yea, yea; Nay, nay: for whatsoever is more than these cometh of evil.

- Matthew 5:37

Engineering Works Because of Abstraction

lď a.(#CH1 W NUM) ld a, (#CH1_W_SEL) nz,#00b4 a, (#CH1 E TABLEO) Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics

Engineering Works Because of Abstraction

Application Software COMS 3157, 4156, et al. Operating Systems COMS W4118 Architecture Second Half of 3827 Micro-Architecture Second Half of 3827 Logic First Half of 3827 **Digital Circuits** First Half of 3827 Analog Circuits ELEN 3331 Devices ELEN 3106 Physics FLEN 3106 et al.

Boring Stuff

Mailing list: csee3827-staff@lists.cs.columbia.edu http://www.cs.columbia.edu/~sedwards/classes/2012/3827-spring/

Prof. Stephen A. Edwards First Half of Semester sedwards@cs.columbia.edu 462 Computer Science Building

Prof. Martha Kim Second Half of Semester martha@cs.columbia.edu 469 Computer Science Building

Lectures 1:10–2:25 PM, Mon, Wed, 614 Schermerhorn Jan 18–Apr 30 Holidays: Mar 12–16 (Spring Break)

Assignments and Grading

Weight	What	When
40%	Six homeworks	See Webpage
30%	Midterm exam	March 7th
30%	Final exam	During Finals Week (May 4–11)

Homework is due at the beginning of lecture.

We will drop the lowest of your six homework scores;

you can { skip omit forget ignore blow off screw up feed to dog flake out on sleep through

one with no penalty.

Rules and Regulations

You may collaborate with classmates on homework.

Each paper turned in must be unique; work must ultimately be your own.

List your collaborators on your homework.

Don't cheat: if you're stupid enough to try, we're smart enough to catch you.

Tests will be closed-book with a one-page "cheat sheet" of your own devising.

The Text

David Harris and Sarah Harris.

Digital Design and Computer Architecture.

Morgan-Kaufmann, 2007.

Almost precisely right for the scope of this class: digital logic and computer architecture

Digital Design and Computer Architecture

There are only 10 types of people in the world: Those who understand binary and those who don't.

thinkgeek.com

Which Numbering System Should We Use? Some Older Choices:

Roman: I II III IV V VI VII VIII IX X	(
---------------------------------------	---

• one	ee two	five	six	nine
H ten	thirteen	fifteen	nineteen	etwenty
• twenty-one	twenty-three	twenty-five	e forty	one hundred

Mayan: base 20, Shell = 0

1 7	u ∢r	21 ≪ Y	31 ₩ 1	41 🛷 T	51 🖧 T
2 TY	া ≺শ	22 ≪ 🕅	32 ₩ 1 1	42 式 TY	52 🔬 TY
3 777	ı3 ≺ î11	23 ≪ TTT	33 🗮 🕅	43 4 M	s Am
4 🍄	⋴∢🏧	24 ≪❤	™ ₩₩	44 X Y	. <i>à</i> 🛛
s ₩	⊪ ∢‱	25 ≪₩	35 ₩₩₩	-s-&€₩	
6 777	∘ ≺∰	28 ≪₩	36 ₩₩	&∰	. A#
7 🐯	17 ≮₩	27 ≪♥	37 ₩₩		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
∘ ₩	⊪∢₩	28 ≪₩	38 🗮 🛱		S-2×▼ ∕₩
◎∰	⋼∢∰	20 ≪∰	39 ₩₩	∞≴∰	∞-\$?₩
10 ◀	20 ≪	30 🗮	* *	50 A	∞-∕\$∰

Babylonian: base 60

The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

$$7 \times 10^2 + 3 \times 10^1 + 0 \times 10^0 = 730_{10}$$

$$9 \times 10^2 + 9 \times 10^1 + 0 \times 10^0 = 990_{10}$$

Why base ten?

Hexadecimal, Decimal, Octal, and Binary

Hex	Dec	Oct	Bin
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
Α	10	12	1010
В	11	13	1011
С	12	14	1100
D	13	15	1101
Е	14	16	1110
F	15	17	1111

Binary and Octal

 $\begin{array}{rcl} \mathsf{PC} & = & 0 \times 2^{11} + 1 \times 2^{10} + 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + \\ & 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \end{array}$

 $= 2 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 5 \times 8^0$

 $= 1469_{10}$

Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F Instead of groups of 3 bits (octal), Hex uses groups of 4.

 $\begin{array}{rcl} \mathsf{CAFEF00D_{16}} &=& 12\times16^7+10\times16^6+15\times16^5+14\times16^4+\\ && 15\times16^3+0\times16^2+0\times16^1+13\times16^0\\ &=& 3,405,705,229_{10} \end{array}$

 | C | A | F | E | F | 0 | 0 | D |
 Hex

 11001010111111011110000000001101
 Binary

 | 3 | 1 | 2 | 7 | 7 | 5 | 7 | 0 | 0 | 1 | 5 |
 Octal

Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you binary represent with 5 decimal hexadecimal

Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")

	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
+020	2	2	3	4	5	6	7	8	9	10	11
	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
	8	8	9	10	11	12	13	14	15	16	17
	9	9	10	11	12	13	14	15	16	17	18
	10	10	11	12	13	14	15	16	17	18	19

1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8	9	10	11
2	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
1 2 2 6	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
	10	10	11	12	13	14	15	16	17	18	19

1	+	0	1	2	3	4	5	6	7	8	9	
434	0	0	1	2	3	4	5	6	7	8	9	
+628	1	1	2	3	4	5	6	7	8	9	10	
	2	2	3	4	5	6	- 7	8	9	10	11	
62	3	3	4	5	6	7	8	9	10	11	12	
	4	4	5	6	7	8	9	10	11	12	13	
	5	5	6	7	8	9	10	11	12	13	14	
	6	6	7	8	9	10	11	12	13	14	15	
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16	
1	8	8	9	10	11	12	13	14	15	16	17	
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18	
4 + 6 = 10	10	10	11	12	13	14	15	16	17	18	19	

1 1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8	9	10	11
062	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
1.2.2	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
4 + 6 = 10	10	10	11	12	13	14	15	16	17	18	19

1 1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8	9	10	11
1062	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
1	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
4 + 6 = 10	10	10	11	12	13	14	15	16	17	18	19

$10011 \\ +11001$

1 -	- 1	=	10	
	_			

+	0 1
0	00 01
1	01 <mark>10</mark>
10	10 11

11 10011 +11001 00 0		
	+	0 1
1+1 = 10 1+1+0 = 10	0 1 10	00 01 01 10 10 11
1 + 0 + 0 = 01		

1 + 1	=	10
1 + 1 + 0	=	10
1 + 0 + 0	=	01
0 + 0 + 1	=	01

+	0 1
0	00 <mark>01</mark>
1	01 10
10	10 11

1 + 1	=	10
1 + 1 + 0	=	10
1 + 0 + 0	=	01
0 + 0 + 1	=	01
0 + 1 + 1	=	10

+	0 1
0	00 01
1	01 10
10	10 11

1+1	=	10
1 + 1 + 0	=	10
1 + 0 + 0	=	01
0 + 0 + 1	=	01
0 + 1 + 1	=	10

+	0 1
0	00 01
1	01 10
10	10 11

Signed Numbers: Dealing with Negativity

John Hancock

How should both positive and negative numbers be represented?

Signed Magnitude Numbers

You are most familiar with this: negative numbers have a leading –

In binary, a leading 1 means negative: $0000_2 = 0$ $0010_2 = 2$ $1010_2 = -2$ $1111_2 = -7$ $1000_2 = -0$?

Can be made to work, but addition is annoying:

If the signs match, add the magnitudes and use the same sign.

If the signs differ, subtract the smaller number from the larger; return the sign of the larger.

One's Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative One's Complement number.

To negate a number, complement (flip) each bit.

- $0000_2 = 0$ Addition is nicer: just add the one's
complement numbers as if they were
normal binary. $1101_2 = -2$ Really approving baying a -0: two
- $1000_2 = -7$
- $1111_2 = -0?$

Really annoying having a -0: two numbers are equal if their bits are the same or if one is 0 and the other is -0.

Two's Complement Numbers

Really neat trick: make the most significant bit represent a *negative* number instead of positive:

1

$$1101_2 = -8 + 4 + 1 = -3$$
$$1111_2 = -8 + 4 + 2 + 1 = -$$

$$0111_2 = 4 + 2 + 1 = 7$$

$$1000_2 = -8$$

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one's complement) then add 1.

Very good property: no -0

Two's complement numbers are equal if all their bits are the same.

Number Representations Compared

Bits	Binary	Signed Mag.	One's Comp.	Two's Comp.
0000	0	0	0	0
0001	1	1	1	1
÷				
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
:				
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Smallest number Largest number

Fixed-point Numbers

How to represent fractional numbers? In decimal, we continue with negative powers of 10:

$$\begin{array}{rll} 31.4159 & = & 3\times10^1+1\times10^0+\\ & & 4\times10^{-1}+1\times10^{-2}+5\times10^{-3}+9\times10^{-4} \end{array}$$

The same trick works in binary:

$$1011.0110_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} = 8 + 2 + 1 + 0.25 + 0.125 = 11.375$$

F F a u c Interesting

The ancient Egyptians used binary fractions:

The Eye of Horus

Floating-point Numbers

How can we represent very large and small numbers with few bits?

Floating-point numbers: a kind of scientific notation

IEEE-754 floating-point numbers:

 $\underbrace{1}_{1000001} \underbrace{011000000000000000000}_{\text{sign exponent}} \\ = -1.011_2 \times 2^{129-127} \\ = -1.375 \times 4 \\ = -5.5$

Binary-Coded Decimal

thinkgeek.com

Humans prefer reading decimal numbers; computers prefer binary.

BCD is a compromise: every four bits represents a decimal digit.

Dec	BCD
0	0000 0000
1	00000001
2	00000010
:	÷
8	00001000
9	00001001
10	00010000
11	00010001
:	÷
18	00011000
19	00011001
20	00100000
:	:

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

000101011000 +001001000010 1010 First group

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

000101011000 +001001000010 1010 First group + 0110 Correction

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

1 00010101000 +001001000010 1010 + 0110 First group Correction 10100000 Second group

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

$$\begin{array}{c} 1 \\ 0001\,0101\,1000 \\ +0010\,0100\,0010 \\ \hline \\ 1010 \\ \hline \\ + 0110 \\ \hline \\ 1010\,0000 \\ \hline \\ \\ + 0110 \\ \hline \end{array} \begin{array}{c} \\ First \ group \\ Correction \\ \hline \\ Second \ group \\ Correction \\ \hline \end{array}$$

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

1 1	
000101011000	
+001001000010	
1010	First group
+ 0110	Correction
10100000	Second group
+ 0110	Correction
01000000	Third group

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

1 1	
000101011000	
+001001000010	
1010	First group
+ 0110	Correction
10100000	Second group
+ 0110	Correction
01000000	Third group
	(No correction)
010000000000	Result