CSEE W3827

Fundamentals of Computer Systems
 Homework Assignment 6

Prof. Martha A. Kim and Stephen A. Edwards
Columbia University
Due April 30th, 2012 at 1:10 PM
Show your work for each problem; we are more interested in how you get your answer than whether you get the right answer.

1. (25 pts.) Examine the following MIPs program:
```
    i1: ori $t0, $0, 1000
    i2: ori $t1, $0, 2000
    i3: addi $t2, $t0, 100
    i4: lw $t3, 0($t1)
    i5: lw $t4, 0($t0)
    i6: add $t3, $t3, $t4
    i7: sra $t3, $t3, 1
    i8: sw $t3, 0($t0)
    i9: sw $t3, 0($t1)
i10: addi $t0, $t0, 4
i11: addi $t1, $t1, 4
i12: slt $t3, $t0, $t2
i13: bne $0, $t3, i4
```

(a) When this code fragment is run, how many instructions will be executed total?
(b) Consider the five-stage MIPS pipeline with full bypass (i.e., M-to-E, W-to-E, and M-to-D bypasses) and stall logic discussed as in class and shown at the end of this assignment. List each hazard in the code and explain how the processor will resolve it, e.g., "stall two cycles," "bypass W to E," "bypass M to D." The first is provided as an example. ${ }^{1}$

- i1 $\rightarrow i 3$, bypass W to E

[^0](c) How many cycles will this code snippet take to execute on a piplined processor?
2. (20 pts.) Assuming the same, fully-bypassed pipeline as in the previous problem.
(a) List all control and data dependencies which result in pipeline stalls (e.g., $i 2 \rightarrow i 3)$.
(b) Reorder the instructions to remove as many of the stalls as possible. You may not change the code other than reordering (i.e., no re-allocating registers). List the stalls that remain.

i1:	lw	$\$ t 0,0(\$ t 1)$
i2:	lw	$\$ t 4,0(\$+2)$
i3:	add	$\$ t 0, \$+0, \$ t 4$
i4:	add	$\$ t 0, \$+0, \$ t 2$
i5:	addi	$\$ t 2, \$+2,-8$
i6:	addi	$\$ t 1, \$ t 1,-8$
i7:	bne	$\$ t 1, \$ 0$, i1

3. (25 pts.) Consider three direct mapped caches X, Y, and Z each interpreting an 8-bit address slightly differently according to the \{tag:setIdx:byteOffset $\}$ format specified. For each address in the reference stream, indicate whether the access will hit (H) or miss (M) in each cache.

Address References

 (in binary)
4. (30 pts.) Consider a three-level hierarchy consisting of an L1 cache backed by an L2 backed by main memory.
(a) For each address referenced, indicate whether it will be a hit (H) or a miss (M) in each cache. You should indicate no access with a slash. For each hit or miss, also indicate the set in which it occurred. For example, $M \rightarrow A$, means the access missed in set A.

	L1	L2
Sets	16	16
Bytes/Block	16	256
Ways	2	2
0xABCDE		
0xABCD0		
0xABDD0		
0xABCEO		
0xABCEF		
0xABCDE		

(b) What is the miss rate for L1 and L2?
(c) Let the L1 access time be 5 cycles, L2 50 cycles, and Memory (which backs L2) 1000 cycles. What is the expected access time for the entire hierarchy, assuming the reference pattern from the first part of the problem?

For reference, fully pipelined MIPS datapath:

[^0]: ${ }^{1}$ For the handful of instructions not supported by the processor assume that: shift and setting operations for sra and slt are performed by the ALU in the Execute stage; that bne is just like beq and with branch resolution in the Decode stage.

