CSEE W3827

Fundamentals of Computer Systems
 Homework Assignment 3

 Solutions

 Solutions}

Profs. Stephen A. Edwards \& Martha Kim
Columbia University
Due February 27th, 2012 at 1:10 PM
Write your name and UNI on your solutions
Show your work for each problem; we are more interested in how you get the answer than whether you get the right answer.

1. (25 pts.) A sequential circuit with two D flip-flops S_{0} and S_{1}, two inputs X and Y, and one output Z behaves according to these equations:

$$
S_{0}^{\prime}=\bar{X} S_{0}+X Y \quad S_{1}^{\prime}=\bar{X} S_{1}+X S_{0} \quad Z=X S_{1}
$$

(a) Draw the corresponding circuit. Label each of the signals mentioned above.
(b) Derive the state table (next state and output as a function of present state and input).
(c) Draw the corresponding bubble-and-arc diagram.

2. (15 pts.) Many serial communication protocols, such as USB, use a signaling protocol known as "non return to zero, inverted" (NRZI) in which a " 0 " is represented as a transition and a " 1 " as no transition. Below is an example of a normal bit stream (NRZ) and how it would be encoded in NRZI as a waveform on the left and the corresponding bit streams on the right.

(a) Draw a Mealy bubble-and-arc diagram for an NRZ-to-NRZI protocol converter.
(b) Choose an encoding for your state machine and write its (encoded) state table.
(c) Design and draw a circuit implementation of your converter using D flip-flops and gates.

3. (15 pts.) Determine the logic for a synchronous 4-bit decimal counter that counts $0,1, \ldots, 9,0,1, \ldots$ in binary. It should have four outputs $Q_{1}, Q_{2}, Q_{4}, Q_{8}$, (the subscripts indicate the value of each bit) each driven directly by a flip-flop.
Write Boolean expressions of the form $D_{i}=Q_{i} \oplus(\cdots)$ for each flip-flop's input. (\oplus is XOR)

```
0000
0001
0010
0011
\(0100 \quad D_{1}=Q_{1} \oplus 1\)
\(0101 \quad D_{2}=Q_{2} \oplus\left(\overline{Q_{8}} Q_{1}\right)\)
\(0110 \quad D_{4}=Q_{4} \oplus\left(Q_{2} Q_{1}\right)\)
\(0111 \quad D_{8}=Q_{8} \oplus\left(Q_{4} Q_{2} Q_{1}+Q_{8} Q_{1}\right)\)
1000
1001
0000
0001
```

4. (15 pts.) Using just three flip-flops and three two-input muxes, draw a circuit for the following Moore state machine with a single input and single output. Use a one-hot encoding. Each state is labeled with the value of the output.

5. (15 pts.)
(a) Write a Boolean expression for the function of the following static CMOS gate.

(b) Draw the schematic for a static CMOS gate that implements $Y=\overline{(A+B) C+D}$
6. (15 pts.) Show how to implement a two-bit priority encoder using the PLA drawn below. Hint: write the expressions for Y and Z in sum-of-products form then draw crosses to indicate connections on the AND plane.

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{Y Z}$
0	0	0	00
1	0	0	01
X	1	0	10
X	X	1	11

$$
\begin{aligned}
& Y=C+B \bar{C} \text { or } Y=B+C \\
& Z=A \bar{B} \bar{C}+C \text { or } Z=A \bar{B}+C
\end{aligned}
$$

