CSEE W3827

Fundamentals of Computer Systems Homework Assignment 1

Profs. Stephen A. Edwards \& Martha Kim

Columbia University
Due February 6, 2012 at 1:10 PM

Write your name and UNI on your solutions
Show your work for each problem; we are more interested in how you get the answer than whether you get the right answer.

1. (5 pts.) What are the values, in decimal, of the bytes

$$
10011100
$$

and
01111000,
if they are interpreted as 8 -bit
(a) binary numbers;
(b) one's complement numbers; and
(c) two's complement numbers?
2. (10 pts.) Show how to compute $6+-14$ using 5 -bit
(a) signed-magnitude numbers;
(b) one's complement numbers; and
(c) two's complement numbers.
3. (10 pts.) Show how to compute $45+57$ in BCD.
4. (10 pts.) Complete the truth table for the following Boolean functions:

$$
\begin{aligned}
& a=X \bar{Y} \bar{Z}+\bar{X} \bar{Y} Z+\bar{X} \bar{Z} \\
& b=(X+\bar{Y})(Y+\bar{Z})(X+\bar{Z})
\end{aligned}
$$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{a}	\mathbf{b}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

5. (10 pts.) Consider the function F, whose truth table is below.

6. (10 pts.) Consider the function F whose truth table is shown below

\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

(a) Write the function F in sum-of-minterms form
(b) Minimize the sum-of-minterms expression, justifying each step
7. (10 pts.) Consider the function F from problem 6.
(a) Fill in and minimize the following Karnaugh map for F

(b) Express your minimized Karnaugh map as a Boolean expression
(c) Are your minimized expressions in problem 6 and problem 7 the same? Why or why not?
8. (20 pts.) Design a circuit that takes two two-bit binary numbers (A_{1} and A_{0}, B_{1} and B_{0}) and produces a true output when, in binary, A is greater than or equal to B.
(a) Fill in the truth table
(b) Fill in the Karnaugh map and use it to minimize

(c) Draw the corresponding circuit.

A_{1}	A_{0}	B_{1}	B_{0}	$A \geq B$
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

9. (15 pts.)
(a) Minimize the Karnaugh map for the complement of the $A \geq B$ function from problem 8.

(b) Use this to draw a circuit for $A \geq B$ (i.e., not the complement).
