CSEE W3827 Fundamentals of Computer Systems Homework Assignment 1

Profs. Stephen A. Edwards & Martha Kim Columbia University Due February 6, 2012 at 1:10 PM

Write your name and UNI on your solutions

Show your work for each problem; we are more interested in how you get the answer than whether you get the right answer.

1. (5 pts.) What are the values, in decimal, of the bytes

10011100

and

01111000,

if they are interpreted as 8-bit

- (a) binary numbers;
- (b) one's complement numbers; and
- (c) two's complement numbers?

2. (10 pts.) Show how to compute 6 + -14 using 5-bit

- (a) signed-magnitude numbers;
- (b) one's complement numbers; and
- (c) two's complement numbers.

3. (10 pts.) Show how to compute 45 + 57 in BCD.

4. (10 pts.) Complete the truth table for the following Boolean functions:

$$a = X\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}\overline{Z}$$
$$b = (X + \overline{Y})(Y + \overline{Z})(X + \overline{Z})$$

X	Y	Ζ	а	b
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

5. (10 pts.) Consider the function *F*, whose truth table is below.

Χ	Υ	Ζ	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- (a) Write *F* as a sum of minterms and draw the corresponding circuit.
- (b) Write *F* as a product of maxterms and draw the corresponding circuit.
- (c) Complete the Karnaugh map for *F* as shown below. You do not have to simplify it.

6. (10 pts.) Consider the function F whose truth table is shown below

W	Χ	Υ	Ζ	F	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	1	
0	1	0	1 0	1 0	
0	1	0	1	1	(
0	1	1	0	0	
0	1	1	1		,
1	1 0	0	0	1 0	(
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	0	
_1	1	1	1	0	

- (a) Write the function *F* in sum-of-minterms form
- (b) Minimize the sum-of-minterms expression, justifying each step

7. (10 pts.) Consider the function *F* from problem 6.

(a) Fill in and minimize the following Karnaugh map for F

- (b) Express your minimized Karnaugh map as a Boolean expression
- (c) Are your minimized expressions in problem 6 and problem 7 the same? Why or why not?

8. (20 pts.) Design a circuit that takes two two-bit binary numbers $(A_1 \text{ and } A_0, B_1 \text{ and } B_0)$ and produces a true output when, in binary, A is greater than or equal to B.

(c) Draw the corresponding circuit.

A_1	A_0	B_1	B_0	$A \ge B$
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

- 9. (15 pts.)
 - (a) Minimize the Karnaugh map for the *complement* of the $A \ge B$ function from problem 8.

(b) Use this to draw a circuit for $A \ge B$ (i.e., not the complement).