CSEE W3827 Fundamentals of Computer Systems Homework Assignment 1 Solutions

Profs. Stephen A. Edwards & Martha Kim Columbia University Due February 6, 2012 at 1:10 PM

Write your name and UNI on your solutions

Show your work for each problem; we are more interested in how you get the answer than whether you get the right answer.

1. (5 pts.) What are the values, in decimal, of the bytes

10011100

and

01111000,

if they are interpreted as 8-bit

(a) binary numbers;

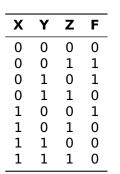
 $10011100_2 = 128 + 16 + 8 + 4 = 156;$ $01111000_2 = 64 + 32 + 16 + 8 = 120$

(b) one's complement numbers; and $-(1100011_2) = -(64 + 32 + 2 + 1) = -99;$ $01111000_2 = 64 + 32 + 16 + 8 = 120$

(c) two's complement numbers? $10011100_2 = -128 + 16 + 8 + 4 = -100 \text{ or}$ 01100011 + 1 = 01100100 = 64 + 32 + 4 = -100; $01111000_2 = 64 + 32 + 16 + 8 = 120$

- 2. (10 pts.) Show how to compute 6 + -14 using 5-bit
 - (a) signed-magnitude numbers; 00110 + 11110 = -(1110 - 0110) = -(1000) = 11000Make sure you strip off the sign bits
 - (b) one's complement numbers; and 00110 + 10001 = 10111 = -(1000) (normal binary addition)
 - (c) two's complement numbers. 00110 + 100010 = 11000 = -(1000) (normal binary addition)

3. (10 pts.) Show how to compute 45 + 57 in BCD.

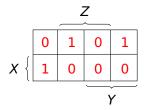

0100 0101	
+01010111	
10011100	The result of normal binary addition
+ 0110	Add 6 since the first digit exceeded 9
1010 0010	
+0110	Add 6 since the second digit exceeded 9
000100000010	=102 ₁₀

4. (10 pts.) Complete the truth table for the following Boolean functions:

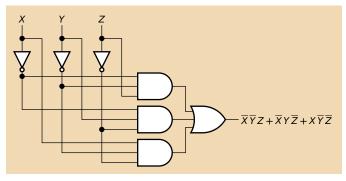
$$a = X\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}\overline{Z}$$
$$b = (X + \overline{Y})(Y + \overline{Z})(X + \overline{Z})$$

X	Y	Ζ	а	b
0	0	0	1	1
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	0	1

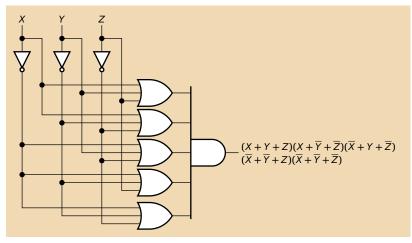
5. (10 pts.) Consider the function *F*, whose truth table is below.


(a) Write *F* as a sum of minterms and draw the corresponding circuit.

$\overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z}$


(b) Write *F* as a product of maxterms and draw the corresponding circuit.

 $\begin{array}{l} (X+Y+Z)(X+\overline{Y}+\overline{Z})(\overline{X}+Y+\overline{Z})\\ (\overline{X}+\overline{Y}+Z)(\overline{X}+\overline{Y}+\overline{Z})\end{array}$


(c) Complete the Karnaugh map for *F* as shown below. You do not have to simplify it.

5. (a)

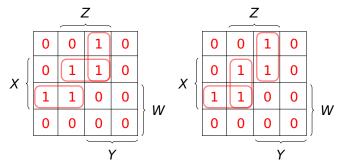
5. (b)

6. (10 pts.) Consider the function *F* whose truth table is shown below

W	Χ	Υ	Ζ	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

$F = \overline{W}\overline{X}YZ + \overline{W}X\overline{Y}Z + \overline{W}XYZ + WX\overline{Y}\overline{Z} + WX\overline{Y}Z$ = $\overline{W}(\overline{X}YZ + X\overline{Y}Z + XYZ) + WX\overline{Y}(\overline{Z} + Z)$ (Factoring) = $\overline{W}((\overline{X} + X)YZ + X\overline{Y}Z) + WX\overline{Y}$ (Factoring, $A + \overline{A} = 1$) = $\overline{W}YZ + \overline{W}X\overline{Y}Z + WX\overline{Y}$

or


$$F = \overline{W}\overline{X}YZ + \overline{W}X\overline{Y}Z + \overline{W}XYZ + WX\overline{Y}\overline{Z} + WX\overline{Y}Z$$

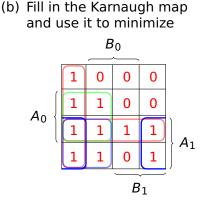
= $\overline{W}(\overline{X}YZ + X\overline{Y}Z + XYZ) + WX\overline{Y}(\overline{Z} + Z)$ (Factoring)
= $\overline{W}((\overline{Y} + Y)XZ + \overline{X}YZ) + WX\overline{Y}$ (Factoring, $A + \overline{A} = 1$)
= $\overline{W}XZ + \overline{W}\overline{X}YZ + WX\overline{Y}$

or

- $F = \overline{W}\overline{X}YZ + \overline{W}X\overline{Y}Z + \overline{W}XYZ + WX\overline{Y}\overline{Z} + WX\overline{Y}Z$
 - $= \overline{W}(\overline{X}YZ + X\overline{Y}Z + XYZ + XYZ) + WX\overline{Y}(\overline{Z} + Z)$ (Factoring, A + A = 1)
 - $= \overline{W}(YZ(X + \overline{X}) + XZ(\overline{Y} + Y)) + WX\overline{Y} \text{ (factoring)}$
 - $= \overline{W}YZ + \overline{W}XZ + WX\overline{Y} (A + \overline{A} = 1)$

7. (10 pts.) Consider the function *F* from problem 6.

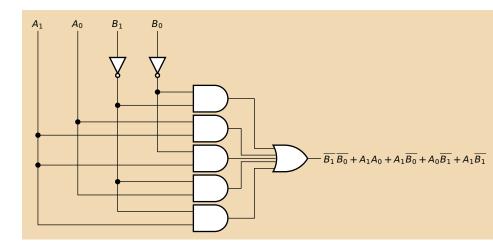
(a) Fill in and minimize the following Karnaugh map for F

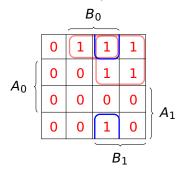

(b) Express your minimized Karnaugh map as a Boolean

$\overline{W}YZ + \overline{W}XZ + WX\overline{Y}$ or $\overline{W}YZ + X\overline{Y}Z + WX\overline{Y}$

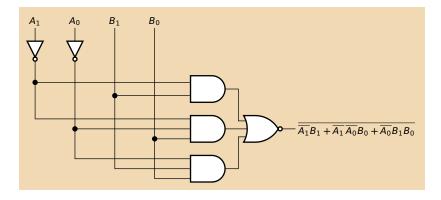
(c) Are your minimized expressions in problem 6 and problem 7 the same? Why or why not?Not necessarily; it's easy to get to a "local minimum" where to

simplify the expression further, you have to make it messier first.


- 8. (20 pts.) Design a circuit that takes two two-bit binary numbers $(A_1 \text{ and } A_0, B_1 \text{ and } B_0)$ and produces a true output when, in binary, A is greater than or equal to B.
- (a) Fill in the truth table


 $\overline{B_1}\overline{B_0} + A_1A_0 + A_1\overline{B_0} + A_0\overline{B_1} + A_1\overline{B_1}$

(c) Draw the corresponding circuit.


A_1	A ₀	B_1	B_0	$A \ge B$
0	0	0	0	1
0	0	0	1	0
0		1	1 0	0
0 0 0	0 0	1		0
0	1	0	1 0	1
0	1	0	1 0	1
0 0	1	1	0	0
0	1 0	1	1 0	0
1 1		0	0	1
1	0	0	1	1
1	0	1	1 0	1
1	0	1	1	0
1	1	0	1 0	1
1	1	0	1 0	1
1	1	1		1
1	1	1	1	1

- 9. (15 pts.)
 - (a) Minimize the Karnaugh map for the *complement* of the $A \ge B$ function from problem 8.

(b) Use this to draw a circuit for $A \ge B$ (i.e., not the complement).

