
CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 4

Profs. Stephen A. Edwards & Martha Kim

Columbia University

Due December 4, 2012 at 10:10 AM

Write your name and UNI on your solutions

Show your work for each problem; we are more interested in how you
get the answer than whether you get the right answer.

1. (25 pts.) Extend the single-cycle MIPS processor to support slti
(i-format, opcode=001011).

SignImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory

WD

WE
0

1

PC0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

Inst. OP RegWrite RegDst ALUSrc Branch MemWrite MemToReg ALUOp

R-type 000000 1 1 0 0 0 0 1-
lw 100011 1 0 1 0 0 1 00
sw 101011 0 - 1 0 1 - 00
beq 000100 0 - 0 1 0 - 01

2. (15 pts.) A processor that does not support the slti instruction, can emulate the behavior as
follows:

subi $d, $s, imm
srl $d, $d, 31

Imagine two single-cycle processors, Pbse which does not support slti, and Pst which does.
Consider also two versions of an application: Ast which is dynamically 10% slti instructions,
and Abse which is the same application with all of the slti’s replaced by the pair of instructions
above. Assuming both processors run at the same clock frequency, rank the following
combinations of software and hardware, from fastest to slowest, explaining your reasoning.

• Abse on Pbse

• Abse on Pst

• Ast on Pst

3. (25 pts.) Consider the tree sum code below.

tree_sum:
bnez $a0, tree_sum_recurse # non-pseudo: bne $a0, $zero, tree_sum_recurse
li $v0, 0
jr $ra

tree_sum_recurse:
addi $sp, $sp, -12
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $s1, 8($sp)
move $s0, $a0 # non-pseudo: addi $s0, $a0, 0
lw $s1, 0($s0)
lw $a0, 4($s0)
jal tree_sum
add $s1, $s1, $v0
lw $a0, 8($s0)
jal tree_sum
add $v0, $s1, $v0
lw $ra, 0($sp)
lw $s0, 4($sp)
lw $s1, 8($sp)
addi $sp, $sp, 12
jr $ra

(a) What is the total number of dynamic instructions, when tree_sum is called on an N-node
tree?

(b) What is the dynamic ratio of control transfer, memory (i.e, loads and stores), and
arithmetic instructions (including li and move) on an N-node tree?

(c) Assuming a very large tree (millions of nodes) what is the rough overall instruction mix?

(d) Consider a single cycle CPU running at 500MHz and a multicycle CPU (5 cycles for
memory ops, 3 for control transfers, 4 for arithmetic) running at 2GHz, which will
compute tree sums faster?

4. (35 pts.) Fill in the values found on the indicated wires for the first 10 cycles when the tree_sum
code above is executed on the following tree:

tiny: .word 1, tiny1, tiny2
tiny1: .word 2, 0, 0
tiny2: .word 3, 0, 0

Assume that the processor supports addi and jal; If any values are undefined given the
information provided, simply mark as “undefined”.

SignImm

CLK

A RD

Instruction

Memory
+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg
4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl
2:0

A
L
U

SignImmInstr25:21

MemtoReg

