CSEE W3827

Fundamentals of Computer Systems Homework Assignment 2

Profs. Stephen A. Edwards \& Martha Kim

Columbia University
Due October 9, 2012 at 11:59 PM
Upload your solution to each problem as a Logisim .circ file to CourseWorks.

1. (20 pts.) Create a circuit for a 4-to-16 decoder using AND gates and inverters only. Arrange and name the inputs and outputs as shown below. Treat W as the most significant bit and let $A 0$ be true when all inputs are false. Only one of the outputs should ever be true.

$$
\begin{array}{ll}
W \rightarrow & \rightarrow A 0 \\
X \rightarrow & \rightarrow A 1 \\
Y \rightarrow & \vdots \\
Z \rightarrow & \rightarrow A 15
\end{array}
$$

Name your solution "hw2-1.circ" and submit it via Courseworks.
hw2 \#1

2. (10 pts.) In Logisim, implement the logical OR function using just a single two-input MUX (under "Plexers \rightarrow Multiplexer"; set "include enable" to "no") and constant " 0 " and " 1 " inputs ("Wiring \rightarrow Constant"). Do not use additional gates.

Draw your inputs and outputs as shown below:

$$
\begin{aligned}
& A \rightarrow \\
& B \rightarrow
\end{aligned} \quad \rightarrow Y
$$

Name your solution "hw2-2.circ" and submit it via Courseworks.
hw2 \#2

3. (15 pts.) In Logisim, implement $F=\bar{X} \bar{Y} \bar{Z}+\bar{Y} Z+X \bar{Y}$ using just constants and
(a) a 3-to-8 decoder (under "Plexers \rightarrow Decoder." Set "include enable" to "No" and note the input wires are a bundle at the bottom) and an OR gate;
(b) an 8 input mux; and
(c) a 4 input mux whose select inputs are X and Y, and an inverter.

Arrange your inputs and outputs as shown below and name your files "hw2-3a.circ," "hw2-3b.circ," and "hw2-3c.circ."

$$
\begin{aligned}
& X \rightarrow \\
& Y \rightarrow \\
& Z \rightarrow
\end{aligned} \quad \rightarrow F
$$

hw2 \#3a
hw2 \#3b

hw2 \#3c

X
 $\times 1$

 04. (20 pts.) Implement an eight-input mux using three four-input muxes and no other gates (constants are OK).
Arrange your inputs and outputs as shown below and name your solution "hw2-4.circ"

$$
\begin{aligned}
& A 0 \rightarrow \\
& A 1 \rightarrow \\
& \vdots \\
& A 7 \\
& X \rightarrow F \\
& Y \\
& Z \\
& Z
\end{aligned}
$$

Here, $A 0$ through $A 7$ are the eight inputs, and X, Y, and Z are the three selects. X is the most significant bit, selecting between, e.g., $A 0$ and $A 4$.
Name your solution "hw2-4.circ."
hw2 \#4

5. (35 pts.) Implement a three-bit binary carry-lookahead adder "hw2-5.circ." $A 0$ through $A 2$ and $B 0$ through $B 2$ are the two binary inputs ($A 0$ and $B 0$ are the LSBs), $C O$ is the carry in, and $Y 0$ through $Y 3$ is the four-bit output. Arrange your inputs and outputs like this:

$$
\begin{array}{ll}
A 2 \rightarrow & \\
B 2 \rightarrow & \rightarrow Y 3 \\
A 1 \rightarrow & \rightarrow Y 2 \\
B 1 \rightarrow & \rightarrow Y 1 \\
A 0 \rightarrow & \rightarrow Y 0 \\
B 0 \rightarrow & \\
C O \rightarrow &
\end{array}
$$

(a) As text labels in your solution, write expressions for G_{0}, \ldots, G_{2} and P_{0}, \ldots, P_{2}, the carry generate and propagate functions, in terms of the inputs.
(b) Write sum-of-product expressions for C_{1}, \ldots, C_{3} in terms of the G's, P's, and C_{0}. Use + for OR, \& for AND, and! for NOT.
(c) Write the equations for the $Y^{\prime} s$ in terms of these. Use ${ }^{\wedge}$ for XOR.
(d) Implement the carry-lookahead adder circuit corresponding to these equations using inverters, AND, NAND, OR, NOR, and
hw2 \#5

