
Loom Report (Draft)

Johnathan Jenkins

July 4, 2011

Abstract

Loom is a domain-specific language for general-purpose graphics processing units
(‘gpgpus’) designed to support millions of parallel execution threads. It is designed
to interface with code written in a ‘host’ language (typically C or C++) running on
the cpu. Loom is sufficiently low-level to implement efficient parallel algorithms, but
includes facilities such as parallel map, parallel reduce and parallel scan to abstract common
patterns.

Contents

1 Introduction 1
1.1 Background . 1

1.2 Overview of Loom . 1

1.2.1 Design Goals and Language Features 1

1.2.2 Representative Programs . 2

2 Tutorial 4

3 Loom Reference Manual 5
3.1 Introduction . 5

3.2 Lexical Elements . 6

3.2.1 Comments . 6

3.2.2 Reserved Words . 7

3.2.3 Operators and Delimiters . 7

3.2.4 Identifiers . 8

3.2.5 Constants . 8

3.2.6 Boolean Constants . 8

3.2.7 Thread Parameters . 8

3.3 Data Types . 8

3.3.1 Type Declarations . 9

3.3.2 Defining New Types . 9

3.4 Expressions . 9

3.5 Control Structures . 10

3.5.1 Parallel Operators . 10

3.5.2 Statements and Blocks . 10

3.5.3 Conditionals . 11

3.5.4 Loops . 11

3.6 Functions . 11

3.6.1 Kernels . 11

3.6.2 Device Functions . 11

4 Project Plan 12

5 Architecture 13

i

ii CONTENTS

6 Testing Procedures 14

7 Lessons Learned 15

Chapter 1

Introduction

1.1 Background

Loom is a language for programming massively parallel co-processors used on many
modern computers. The specific devices supported are nvidia gpgpus using the cuda ar-
chitecture.

Cuda devices support tens of thousands, or even millions of simultaneous execution
threads, with hundreds of threads running in parallel at any time. The threads are or-
ganized into a hierarchy: groups of 32 threads make up warps that execute in series on
single core, and do not have to be synchronized; groups of up to 512 threads make up
blocks, which can use high-speed shared memory for inter-thread communication and
user-managed caching; the blocks collectively form a grid, and all threads in a single grid
execute the same kernel code. Although the kernel is the same for each thread in a grid,
individual threads need not follow the same execution path.

In addition to shared memory, devices have cached constant memory, registers, and
global memory. Transfer of data from the host computer’s main memory to the device
global memory space occurs in code on the host side (that is, not within kernels running
on the gpgpu device). This simplifies loom, which is solely for compiling gpgpu kernels.
In addition to memory transfer to and from the host computer, all input and output occurs
on the host side.

Most cuda device programming is done in a C-like language supplied by nvidia.
The target language for loom, however, is a lower-level language called ptx. Ptx looks
very much like a traditional assembly language, although it runs on a device-independent
virtual machine and is jit-compiled to a cubin binary for execution.

Extensive documentation on cuda is available from http://developer.nvidia.com.

1.2 Overview of Loom

1.2.1 Design Goals and Language Features

Loom attempts to abstract away many of the repetitive and error-prone details involved
in writing gpgpu kernels, such as explicit array index calculations and thread barrier

1

2 Introduction

synchronization, while remaining at a sufficiently low level to allow interesting parallel
algorithms to be implemented (rather than merely used in a black-box library, such as the
cuda linear algebra libraries supplied by nvidia).

The language is statically typed. Types are indicated following a colon after a variable
name: x: Int32. In addition to basic types such as Int32 and Float32, which correspond
directly to ptx types, there are records such as pair: {first:Int32, second:Int32}
(a pair of integers), vectors such as v: Int32[10], and two dimensional arrays such as
a: Int32[5,5]. Several special constants make it easy to work on large vectors and
arrays in parallel.

Loom has several standard control constructs for conditionals and looping, which are
demonstrated in the sample programs below. The language also has operators designed to
simplify parallel programming. There is a parallel map operator which applies a function
of one variable to each element in a vector or array: f // v. The parallel reduce operator,
/., applies a function of two variables (which should be associative in those variables)
repeatedly to reduce a vector or array to a single value per cuda block (subsequent kernel
calls, or code running on the host cpu, can then be used to complete the reduction).
Loom also defines left and right parallel scan operators, /: and :/. As with the reduction
operator, scans work across blocks rather than across entire vectors.

Shared memory, which functions both as a user-managed cache and a mechanism
for sharing data between threads in a single block, is allocated by declaring a variable
with the shared keyword. Cuda programs typically use explicit barrier synchronization
instructions to synchronize threads within a block; in loom, statements that move data
between memory state spaces and alter state are synchronized by default.

Due to limitations of at least certain cuda architectures, functions cannot be recursive.
A newer architecture used on high-end graphics cards, called ‘Fermi’, permits recursive
functions as well as a number of other powerful features. It would be an interesting
exercise to extend loom to take advantage of some of those features.

1.2.2 Representative Programs

Finally, we show listings of a few short programs illustrating some of loom’s features.
. Find the maximum values in a two-dimensional array (by cuda block):

kernel maximum(in: Int32[X_THREADS, Y_THREADS],
out: Int32[X_BLOCKS, Y_BLOCKS])

out <- max /. in

. Shift the values in a vector to the left by exactly one block:

kernel shiftLeft(in: Float32[THREADS], out: Float32[THREADS])
current: Range <- block(B) -- ’B’ is the current block index
previous: Range <- block(B-1) -- Range type {Int32, Int32}
out[[current]] <- in[[previous]]

Note that arrays indexed with double brackets are bounds-checked and padded to zero
outside the defined range. Single-brackets perform unsafe array indexing. This following
is a more explicit, but equivalent, implementation:

kernel shiftLeft1(in: Float32[THREADS], out: Float32[THREADS])
if B > 0 then

for i: Int32 <- B*BLOCKSIZE .. (B+1)*BLOCKSIZE

1.2 Overview of Loom 3

out[i] <- in[i-BLOCKSIZE]
else

for i: Int32 <- B*BLOCKSIZE .. (B+1)*BLOCKSIZE
out[i] <- 0

The .. symbol in the for statement shows that i takes on successive values from
B*BLOCKSIZE (inclusive) to (B+1)*BLOCKSIZE (exclusive). We could have expressed
the same range of values by writing B*BLOCKSIZE ... (B+1)*BLOCKSIZE-1, where
the ... symbol shows that i goes up to (B+1)*BLOCKSIZE-1 (inclusive).

. Compute the sum of squares (by block):

func sum(x: Float32, y: Float32): Float32
return x + y

func sqr(x: Float32): Float32
return x*x

kernel sumOfSquares(in: Int32[THREADS], out: Int32[BLOCKS])
local current: Range <- block(B)
shared t: Float32[] <- in[current] -- size is BLOCKSIZE
out[B] <- sum /. (sqr // t)

Chapter 2

Tutorial

4

Chapter 3

Loom Reference Manual

3.1 Introduction

This reference manual gives a brief description of the loom language, following the model
of Appendix A to Kernighan and Ritchie, The C Programming Language (2nd ed.). In some
cases, sections headings have been taken directly from K&R.

Because loom is designed to closely match the target cuda architecture, in a num-
ber of cases loom language features should be understood with reference to the relevant
nvidia documentation. For example, internal floating-point formats, limitations on the
number of threads in a warp, and similar information can be found in the cuda api Refer-
ence Manual Version 4.0, the cuda C Programming Guide Version 4.0, and the cuda ptx:
Parallel Thread Execution isa Version 1.4, all of which are available at http://developer.nvid-
ia.com/nvidia-gpu-computing-documentation.

text separated by newline characters. A program consists of exactly one kernel defi-
nition, along with func definitions for supporting device functions, and type declarations.

Source files containing libraries of funcs and type declarations can be included with
an import directive:

import <path>

<path> is a relative or absolute path to the additional source file to be imported. import
is not a true statement in the language; it simply causes additional files to be spliced in,
like C’s #include.

Loom programs are typically written using line breaks and indentation to indicate
block structure, rather than with explicit curly braces and semicolons as for C-syntax
languages. To facilitate parsing, however, the first stage in compiling a loom program is
running the input source code through a preprocessor that inserts braces and semicolons
to mark blocks and statements.

The preprocessor goes through the input line by line, keeping a stack of indentation
amounts, as well as the indentation of the preceding line. For simplicity, indentation is
indicated solely by spaces at the beginning of the line – behavior is undefined if there are
tab characters in the input. The preprocessor applies the following rules for each line:

5

6 Loom Reference Manual

1. If the line contains a keyword that introduce a block (if-then, else, for, while,
func, and kernel), insert an open brace at the end of the line.

2. If the line does not contain a block-introducing keyword, and is indented further
than the preceding line, push the current indentation onto the stack and add a
semicolon at the end of the line.

3. If the line does not contain a block-introducing keyword, and is indented the same
as the preceding line, add a semicolon at the end.

4. If the line is indented less than the preceding line, pop the stack, and check that
the indentation is the same as the new top of the stack. If it is the same, insert a
closing brace and continue with steps 1–3 as appropriate. Otherwise, indicate an
indentation error.

. Example: convert the following code to use explicit braces and semicolons:

func foo(a: Int32): Int32
local sum: Int32 <- 0
for i: Int32 <- 1 .. 5

iSqr: Int32 <- i*i
sum += i2

return sum -- sum = 1 + 2*2 + 3*3 + 4*4 = 30

The preprocessor converts this into

func foo(a: Int32): Int32 {
local sum: Int32 <- 0;
for i: Int32 <- 1 .. 5 {

iSqr: Int32 <- i*i;
sum += i2;

}
return sum;

}

3.2 Lexical Elements

Tokens may be comments, keywords, operators, identifiers, constants, or thread parame-
ters. There are also a few delimiter tokens that do not fall into these categories, such as
parentheses (which are used to indicate grouping within expressions and to set off func-
tion arguments) and the two- and three-dot range symbols used within for statements.

After the preprocessing stage, whitespace is generally ignored except where necessary
to separate adjacent tokens that would otherwise be lexically ambiguous.

3.2.1 Comments

Comments are indicated by two adjacent hyphen characters (‘--’). They may begin any-
where in a line, and continue until the next newline character, which marks the end of
the line. There is no special syntax for multiline comments. Comments are treated as
whitespace.

3.2 Lexical Elements 7

3.2.2 Reserved Words

The following keywords, typenames, and predefined value symbols are reserved:
break global Bool B
const kernel Byte BLOCKS
continue local Float32 BLOCKSIZE
else return Float64 T
if shared Int32 THREADS
import then Int64
for type Uint32 FALSE
func while Uint64 TRUE

In addition, to facilitate working with two-dimensional arrays, 2-D variations of the block
and thread symbols in the right-hand column are also used (X B, Y B, X BLOCKS and
Y BLOCKS, etc.).

3.2.3 Operators and Delimiters

Loom recognizes the following operators and delimiters, ranked in order of precedence
from highest (top row) to lowest (bottom row):

{ } ;
() [] [[]]
:
!

* / % << >> &
+ - | ˆ
= != < <= > >=
&&
||
// /. /: :/
<-

Individual operators and delimiters are described in the following table:

{ } ; statement blocks, statement termination
[] unsafe array indexing
[[]] safe array indexing with zero-padding
: type tag
! boolean negation
* / % multiply, divide, modulo
<< >> & shift-left, shift-right, bitwise and
+ - add, subtract / unary negate
|ˆ bitwise or, xor / unary one’s complement
= != < <= > >= relational operators
&& || logical and, or
// /. /: :/ parallel map, reduce, scanl and scanr
.. ... range delimiter in for statements
<- assignment

Most binary operators group left-to-right, although assignments and expressions with
unary operators group right-to-left.

8 Loom Reference Manual

3.2.4 Identifiers

User-defined identifiers may refer to functions, variables, types, arrays, or records. Iden-
tifiers must be accepted by the following regular expression:

identifier:: [a-zA-Z][a-zA-Z0-9_’]*

3.2.5 Constants

Loom supports literal constant expressions for booleans and 64-bit integers and floating-
point numbers.

Floating-point literals are written with an optional decimal point, and an optional
signed exponent following [eE].

Constants may be followed by a type tag to force their type to be different from the
default (e.g., 123: Float32 will be read in as a Float32).

Constants may be combined into constant expressions using the evaluation rules for
expressions set forth below.

3.2.6 Boolean Constants

TRUE and FALSE are predefined symbolic constants of type Bool.

3.2.7 Thread Parameters

A number of symbolic parameters are defined at the time the kernel is invoked by host
code running on the cpu. These parameters allow the gpgpu device thread to know about
its execution context.

B Index of the current thread block
BLOCKS Number of thread blocks in the grid
BLOCKSIZE Number of threads per block
T Index of the current thread
THREADS Number of threads in the grid

The parameters in the table correspond to grids laid out in one dimension (i.e., laid
out to easily accommodate one-dimensional data structures for inputs and outputs to and
from the gpgpu). Loom also supports two-dimensional layouts, in which case analogues
to the parameters above are defined at the time of kernel invocation, prefaced by X and
Y .

3.3 Data Types

Each variable in loom has an associated identifier (its name) and a data type. The ba-
sic loom data types generally correspond their cuda/ptx equivalents, except for Bools,
which are primarily used to control program execution. In addition to the basic types,
loom supports (one- and two-dimensional) array and record container types, as well as
new types defined in a type statement.

3.4 Expressions 9

3.3.1 Type Declarations

Variables must be declared before they are used (although in the special case of for state-
ments, the declaration can occur within the statement itself). Declaration statements take
an optional initialization assignment. If no explicit initialization is present, the variable is
set to zero (in the case of numerical types) or FALSE (in the case of Bools).

local x: Int32 -- Initialized to 0
local e: Float32 <- 2.718281828
for i: Int32 <- 0 .. 10

x <- x + i

All variable objects exist in one of three memory spaces: global memory (the main
memory on the gpgpu device), shared memory (a much smaller amount of high-speed
memory simultaneously accessible to the threads in a single cuda block) or local memory
(memory local to a single thread, often mapped to registers).

variable-decl: memory-space identifier ’:’ type initializer
memory-space: ’local’ | ’shared’ | ’global’
type: identifier | basic-type | array-type | record-type
basic-type: ’Bool’ | ’Byte’ | ’Float32’ | ...
array-type: type ’[’ constant-expression ’]’
record-type: ’{’ identifier ’:’ type maybe-more ’}’
maybe-more: ’’ | ’,’ identifier ’:’ type maybe-more
initializer: ’’ | ’<-’ constant-expression

3.3.2 Defining New Types

Users may define their own types to supplement the built-ins.

type-definition: ’type’ identifier type

3.4 Expressions

Expressions are combinations of variables, constants, function calls and operators that
have a value, and therefore a type. Instead of specifying an unambiguous grammar for
expressions (as in K&R Appendix A), ambiguities in the following grammar are resolved
with reference to the operator precedence and grouping rules provided above.

expression: identifier
| ’(’ expression ’)’
| binop-expr | unary-expr
| reference
| assignment-expr
| parallel-expr
| function-call

binop-expr: expression binop expression
binop: + | - | * | / | ...
unary-expr: unary-op expression
unary-op: ! | - | ˆ
reference: array-unsafe-ref | array-safe-ref | record-ref
array-unsafe-ref: identifier ’[’ expression second-index ’]’
array-safe-ref: identifier ’[[’ expression second-index ’]]’

10 Loom Reference Manual

second-index: ’’ | ’,’ expression
record-ref: identifier ’.’ identifier
assignment-expr: lhs ’<-’ expression
lhs: identifier | reference
parallel-expr: map-expr | reduce-expr | scanl-expr | scanr-expr
map-expr: function-name // array-expr
reduce-expr: function-name /. array-expr
scanl-expr: function-name /: array-expr
scanr-expr: function-name :/ array-expr
function-name: identifier
array-expr: identifier | map-expr
function-call: identifier ’(’ expression maybe-others ’)’
maybe-others: ’’ | ’,’ expression maybe-others

Note that an lhs may be the name of an (unindexed) array, in which case the correspond-
ing assignment expression is compiled into a loop over the array, where each iteration
performs a sub-assignment to one element of the array.

3.5 Control Structures

Most loom control structures are similar to those in traditional imperative languages. The
exceptions are the parallel operators. Strictly speaking, loom programs run inside a single
thread on a cuda device, so in a sense these operators are not parallel by themselves.
Rather, they are designed to encapsulate common patters for coordinating many threads
to do work and share data in parallel.

3.5.1 Parallel Operators

Certain type restrictions apply to parallel-expr expressions. For each of the four
operators, the function on the left must accept a value having the same type as the type
contained within the array on the right, and the array’s dimension should match the
number of cuda threads in the grid (in either one or two dimensions).

The map operator, //, produces an array with the same dimensions as the starting
array (THREADS or X THREADS × Y THREADS). The reduce operator, /., produces a scalar.

The two scan operators, /: and :/, produce arrays with dimensions BLOCKS or
X BLOCKS × Y THREADS (in the case of two-dimensional arrays, the reduce and scan
operators work over the first array index).

3.5.2 Statements and Blocks

statement: expression ’;’
| block
| if-stmt | for-stmt | while-stmt
| ’break’ ’;’
| ’continue’ ’;’
| ’return’ return-val ’;’

block: ’{’ statement other-stmts ’}’
other-stmts: ’’ | other-stmts
return-val: ’’ | expression

3.6 Functions 11

Blocks are significant not only for grouping statements within control structures, but
also because local variables have block scope.

The loop control statements break and continue act in the usual way on the inner-
most surrounding loop.
3.5.3 Conditionals

if-stmt: ’if’ expression ’then’ block maybe-else
maybe-else: ’’ | ’else’ block

Loom follows the C convention for resolving else ambiguity: the else connects with
the last-encountered else-less if.
3.5.4 Loops

while-stmt: ’while’ expression block
for-stmt: ’for’ loop-var ’<-’ expression dots expression block
loop-var: identifier maybe-type
maybe-type: ’’ | ’:’ type

If a loop variable is declared within the for statement, its scope is the surrounding block
rather than the block in the body of the statement.

3.6 Functions

Loom has two kinds of functions: kernel functions (of which there is exactly one per pro-
gram, and which is called from code running on the host cpu) and device functions (which
can be called by the kernel function or by other device functions). Due to limitations of
the cuda architecture, recursion is not permitted.

3.6.1 Kernels

kernel-func: ’kernel’ identifier ’(’ parameters ’)’ block
parameters: parm maybe-parms
parm: identifier ’:’ type
maybe-parms: ’’ | ’,’ maybe-parms

The kernel function is the only function that does not have a return type – it can affect
the world only by altering the global variables passed in as arguments.

The block in the body of the kernel function must contain at least one return state-
ment.
3.6.2 Device Functions

device-func: ’func’ identifier ’(’ parameters ’)’ ’:’ type block

Device function definitions are similar to kernel functions, except that they have a
return type and are introduced by a different keyword.

Arguments are generally passed by value except for arrays, which are passed by ref-
erence. In a function-call statement such as f(1+1,2+2,a), expressions in the argument
list are evaluated from left to right before the function call.

Chapter 4

Project Plan

12

Chapter 5

Architecture

13

Chapter 6

Testing Procedures

14

Chapter 7

Lessons Learned

15

Appendix: Source Listings

16

