
iDrive Programming Language

Final Project Report
(for COMS W4115)

Parag Jain
pj2171@columbia.edu

Contents

1 Introduction 3

2 About the iDrive Programming Language 4

3 Language Tutorial 5
3.1 A First Example . 5
3.2 Compiling iDrive programs . 6
3.3 More Examples . 6

4 Language Reference Manual 9
4.1 Lexical Conventions . 9

4.1.1 Character Set . 9
4.1.2 Identifiers . 9
4.1.3 Keywords . 9
4.1.4 Constants . 10
4.1.5 Operators . 10
4.1.6 Punctuators . 11
4.1.7 Comments . 11
4.1.8 White Space . 12
4.1.9 Semicolons and Line Breaks . 12

4.2 Data Types . 12
4.2.1 Simple Types . 12
4.2.2 Complex Types . 12

4.3 Statements . 13
4.3.1 Compound Statements . 13
4.3.2 Expression Statements . 14
4.3.3 Control Statements . 14

4.4 Functions . 15
4.4.1 User-defined Functions . 15
4.4.2 Built-in Functions . 16

1

4.5 Scope . 17

5 Project Plan 18
5.1 Responsibilities . 18
5.2 Methodology . 18
5.3 Software Development Environment . 18
5.4 Programming Style . 19
5.5 Project Timeline . 19

6 Architectural Design 20
6.1 Architectural Block Diagram . 20
6.2 Interfaces and Flow . 21
6.3 Enhancements over MicroC . 21

7 Test Plan 23
7.1 Test Cases . 23
7.2 Automation . 26
7.3 Testing Results . 26

8 Lessons Learned 28

9 Appendix 30
9.1 scanner.mll . 30
9.2 parser.mly . 32
9.3 ast.mli . 36
9.4 interpret.ml . 38
9.5 iDrive.ml . 44
9.6 Make.bat . 44
9.7 Cleanup.bat . 45
9.8 RunTests.bat . 46
9.9 CleanupTests.bat . 46
9.10 Representative Program . 47
9.11 Representative Program Output . 52
9.12 Some Sample Input Test Files . 76

9.12.1 test23.iDrive . 76
9.12.2 test27.iDrive . 77
9.12.3 test29.iDrive . 78

2

Chapter 1

Introduction

Cars equipped with a system that is capable of driving from one point to another without
input from a human operator have got significant attention from academic, commercial, de-
fense, and government sectors over the past few decades. Early prototypes date as far back
as late 1970s, however important progress only came to be seen in the late 2000s through pro-
grams like DARPA Grand Challenge competitions and Google Driverless Car project. Some
proposed systems depend on infrastructure-based guidance systems; while more advanced
systems propose to simulate human perception and decision-making during steering of a car
via advanced computer software linked to a range of sensors such as cameras, radar, and
GPS. Some of the advantages of “Driverless Cars” include managing traffic flow to increase
road capacity, avoid accidents by eliminating driver error, relieving vehicle occupants from
driving and navigating chores, transporting loads in dangerous zones such as battlefields,
and reducing costs of employing drivers.

3

Chapter 2

About the iDrive Programming
Language

iDrive is a high level programming language that provides basic constructs to develop algo-
rithms to simulate an environment where cars drive without a need for human intervention.
Currently, no such language exists and given the complexity of the paradigm, iDrive is
extremely useful since it is specialized to accomplish this challenging task. The primary
focus of iDrive is the abstraction and reduction of non-essential or monotonous tasks so
that the researchers no longer need to spend time specifying the characteristics of driving
and just need to focus on creating intelligent algorithms for developing fully autonomous
cars. iDrive provides the researcher with a rich set of tools that may be used intuitively
to implement algorithms for driving cars. Every effort has been made to ensure that the
language is intuitive and easy to read and understand.

Using iDrive, a program first creates a simple car object and subsequently creates other
simple objects including cars, traffic signals, stop signs, and pedestrians, and assigns basic
properties which characterize them. In the real world, the program would be made aware of
the presence of such objects using advanced computer software linked to a range of sensors
such as cameras, radar, and GPS. To simulate such input, the program creates these objects
randomly and incrementally. As the car heads toward its destination, the program determines
the flow of traffic and outputs the outcome of interactions between the objects.

4

Chapter 3

Language Tutorial

iDrive uses a C and Java like syntax. An iDrive program consists of global and local object
declarations, function declarations, and the main() function. iDrive supports four simple
types - boolean, integer, decimal, and string - and five complex types – object,

vehicle, pedestrian, trafficsignal, and stopsign. It has support for built-in expres-
sions that operate on one or more of these types. The functions in iDrive are similar to C
and Java and the main() function is the entry point of an iDrive program. The following
sections elaborate this in detail.

3.1 A First Example

A few variations of a simple “Hello World” program can be used to illustrute how iDrive

may be used:

First:

/* Hello world program */

function main()

{

print("Hello World!!!");

}

Second:

/* Hello world program */

object a(string x);

5

function main()

{

a.x = "Hello World!!!";

print(a.x);

}

Third:

/* Hello world program */

function main()

{

object a(string x = "Hello John!!!");

a.x = "Hello World!!!";

printSomething();

}

function printSomething()

{

print(a.x);

}

3.2 Compiling iDrive programs

An iDrive program consists of a single source code file. Once this file is created, it must be
saved with a .iDrive file extension. Using command line, the following statement compiles
an arbitrary test.iDrive program and saves the output of the program in a file called
test.out:

iDrive test.iDrive > test.out

3.3 More Examples

A rather involved example of an iDrive program RepresentativeProgram.iDrive has been
included in the appendix. The goal of this program is to safely transport a vehicle object
(a car) from its source position to destination position in the presence of other objects like
vehicles, pedestrians, traffic signals, and stop signs. Here is a snippet of the output of this
program:

6

Current speed is 0 miles/hr

Current position is (0, 0)

Destination position is (0, 50)

Current heading is North

Current distance from destination = 50. miles

Current speed increased to 5. miles/hr

Current position is (0, 0.0277777777778)

Current distance from destination = 49.9722222222 miles

...

DECELERATING DUE TO A STOP SIGN UP AHEAD

Current speed decreased to 40. miles/hr

Current position is (0, 1.47222222222)

Current distance from destination = 48.5277777778 miles

Current speed decreased to 35. miles/hr

Current position is (0, 1.66666666666)

Current distance from destination = 48.3333333333 miles

...

DECELERATING QUICKLY DUE TO AN UNEXPECTED APPROACHING CAR

Current speed decreased to 25. miles/hr

Current position is (0, 6.33333333334)

Current distance from destination = 43.6666666667 miles

Current speed decreased to 5. miles/hr

Current position is (0, 6.36111111112)

Current distance from destination = 43.6388888889 miles

...

DECELERATING DUE TO A TRAFFIC SIGNAL UP AHEAD

Current speed decreased to 15. miles/hr

Current position is (0, 7.27777777779)

Current distance from destination = 42.7222222222 miles

Current speed decreased to 10. miles/hr

Current position is (0, 7.33333333335)

Current distance from destination = 42.6666666667 miles

...

7

DECELERATING QUICKLY DUE TO AN UNEXPECTED PEDESTRIAN

Current speed decreased to 0. miles/hr

Current position is (0, 12.1111111112)

Current distance from destination = 37.8888888888 miles

Current speed increased to 5. miles/hr

Current position is (0, 12.138888889)

Current distance from destination = 37.861111111 miles

...

Approaching destination

Current speed decreased to 40. miles/hr

Current position is (0, 49.8333333334)

Current distance from destination = 0.1666666666 miles

Current speed decreased to 35. miles/hr

Current position is (0, 50.0277777778)

Current distance from destination = 0.0277777778 miles

Arrived at destination

8

Chapter 4

Language Reference Manual

4.1 Lexical Conventions

iDrive uses syntax based on that of C and Java because the idea is to create a development
environment that is relatively familiar to those who already know C and Java, hence reducing
the learning curve for transitioning to iDrive.

iDrive uses a standard grammar and character set. Characters in the source code are
grouped into tokens, which can be identifiers, keywords, operators, punctuators, or string
literals. The compiler forms the longest possible token from a given string of characters;
tokens end when white space is encountered, or when it would not be possible for the next
character to be part of the token.

4.1.1 Character Set

iDrive accepts standard ASCII characters.

4.1.2 Identifiers

An identifier is a sequence of letters, digits, and the underscore character and represents the
names of user defined variables and functions. All identifiers start with a letter. Identifiers
are case sensitive and keywords can not be used as identifiers.

4.1.3 Keywords

Keywords are identifiers that are reserved words in iDrive. They have specific function and
can not be used as identifiers. Keywords are case sensitive and valid keywords are:

9

object vehicle pedestrian trafficsignal stopsign

boolean int decimal string

true false

while

for

if else

function

print

random

sqrt

streq

main

4.1.4 Constants

A constant is used to set value for an identifier that forms an attribute for an object.

Integer constants

Integer constants are represented with whole numbers in decimal format. An integer constant
constitutes only of digits; decimal point and exponent are not allowed. A unary - operator
is allowed. For example, 4 or -342.

Floating point constants

Floating point constants are represented with a whole part, a decimal point and a fractional
part. The whole part and the fractional part are made up only of digits. A unary - operator
is allowed. For example, 8.1 or -0.42322.

String constants

String constants are made up of a sequence of zero or more characters that are enclosed in
quotes. For example, “John Smith” or “2”.

4.1.5 Operators

Operators are tokens that specify an operation on at least one operand. They are used in
expressions, assignments and object dereferencing.

< <= > >= == != Relational operators
! && || Logical operators

10

+ - * / ^ Mathematical operators
++ String concatenation operator
- Unary operator
= Assignment operator
. To dereference attribute of an object

The table below shows the precedence the iDrive compiler uses to evaluate operators. Op-
erators with the highest precedence appear at the top of the table; those with the lowest
precedence appear at the bottom. Operators of equal precedence appear in the same row.

Category Operator Associativity
Dot . Left to right

Unary - Right to left
Mathematical ^ Left to right
Mathematical * / Left to right
Mathematical + - Left to right

String ++ Left to right
Relational < <= > >= Left to right
Relational == != Left to right

Logical ! Left to right
Logical && Left to right
Logical || Left to right

Assignment = Right to left

Associativity relates to precedence, and resolves any ambiguity over the grouping of operators
with the same precedence. Most operators associate left-to-right, so the leftmost expressions
are evaluated first. The assignment operator and the unary operators associate right-to-left.

4.1.6 Punctuators

‘‘ ’’ To enclose string constants
{ } To enclose a group of statements in a procedure or function
() To enclose a group of arguments for a function
; To separate a statement from another
, To separate arguments within a function

4.1.7 Comments

Inline comments begin with the // character sequence and end with a line feed. Alternatively,
comments may begin with the opening character sequence /* and close with the sequence
*/. Comments cannot be nested.

11

4.1.8 White Space

White space characters which include spaces, tabs, and line feed characters may used to
separate keywords, operators, and code tokens in the input but are discarded during parsing.

4.1.9 Semicolons and Line Breaks

Semicolons serve as a statement separator, and line breaks serve as a terminator. Multiple
statements may be put on a single line of source code using semicolons in between each
statement.

4.2 Data Types

4.2.1 Simple Types

These can be defined on their own, or they can serve as attributes within a complex type.

boolean Used to hold true/false data
int Used to hold integer data
decimal Used to hold decimal data
string Used to hold string data

4.2.2 Complex Types

object

An object is used to define a simple object. An object is characterized by one or more
user defined fields or attributes holding some data. An object has no predefined attributes.
Attributes are all custom and could be added at initialization as well as later in the program.
For example,

object identifier (int identifier1 = 1, string identifier2 = ‘‘John Smith’’,

int identifier3 = 5);

or

object identifier (int identifier1, string identifier2, int identifier3);

identifier.identifier1 = 1;

identifier.identifier2 = ‘‘John Smith’’;

identifier.identifier3 = 5;

12

vehicle

A vehicle is used to define a car. Similar to object, a vehicle is characterized by one
or more user defined fields or attributes holding some data. At this point vehicle has no
predefined attributes but such predefined attributes may be introduced in a later version of
iDrive.

pedestrian

A pedestrian is used to define a pedestrian. Similar to object, a pedestrian is charac-
terized by one or more user defined fields or attributes holding some data. At this point
pedestrian has no predefined attributes but such predefined attributes may be introduced
in a later version of iDrive.

trafficsignal

A trafficsignal is used to define a traffic signal. Similar to object, a trafficsignal is
characterized by one or more user defined fields or attributes holding some data. At this
point trafficsignal has no predefined attributes but such predefined attributes may be
introduced in a later version of iDrive.

stopsign

A stopsign is used to define a car stop sign. Similar to object, a stopsign is characterized
by one or more user defined fields or attributes holding some data. At this point stopsign

has no predefined attributes but such predefined attributes may be introduced in a later
version of iDrive.

4.3 Statements

Statements are executed in the sequence in which they appear in the code.

4.3.1 Compound Statements

A compound statement, or block, allows a sequence of statements to be treated as a single
statement. A compound statement begins with a {, (optionally) contains statements, and
ends with a }. For example,

{
statement1

statement2

13

...

}

4.3.2 Expression Statements

An expression statement can be a combination of operators, identifiers, and literals. Upon
evaluation, an expression returns a value. The value type is dependant on the expressions
being combined. For example,

identifier == ‘‘John Smith’’

or

identifier1 > identifier2 .

4.3.3 Control Statements

To control a program’s flow the following control statements are supported much like in C
and Java:

while loop

The while loop has the following syntax:

while (expression)

{
statement1

statement2

...

}

In a while loop, the statements inside the while loop are repeatedly executed as long as
expression is true.

for loop

The for loop has the following syntax:

for (expression1 ; expression2 ; expression3)

{

14

statement1

statement2

...

}

In a for loop, first expression1 is executed. Then the statements inside the for loop are
repeatedly executed followed by expression3 as long as expression2 is true.

if else condition

The if else statement has the following syntax:

if (expression)

{
statement1

statement2

...

}
else

{
statement3

statement4

...

}

The statements following the control expression are executed if the value of the control
expression is true (nonzero). The statements in the else clause are executed if the control
expression is false (zero).

4.4 Functions

4.4.1 User-defined Functions

The function keyword is used to define user-defined functions. A function in iDrive does
not have a return type and all parameters passed to the function are “passed by value” and
the outcome of the function is reflected only on the passed arguments. Functions can ac-
cess global variables, parameters, and locally declared variables. function has the following
syntax:

function identifier (parameter1, parameter2, ...)

15

{
statement1

statement2

...

}

4.4.2 Built-in Functions

iDrive provides the following built-in functions which may not be redefined.

print

The print function is used to output text to the screen. This function takes a combinations
of string constants (elcosed in “”) and identifiers (holding some data) as input, resolves the
identifiers to text, and outputs the resulting text to the screen. The print statement has
the following syntax:

print(‘‘My name is ’’ identifier ‘‘. What is your name?’’)

random

The random function is used to randomly pick an integer between 0 (inclusive) and bound

(exclusive). This function takes an integer value for bound as input and outputs a randomly
chosen integer. This function is used when the program needs to randomly create objects to
interact with the primary vehicle object that is on its way to its destination. The random

statement has the following syntax:

random(bound)

sqrt

The sqrt function is used to find the square root of an integer or a decimal. This function
takes an integer or decimal value for var as input and outputs the sqaure root of var .
This function is used while computing the distance between a vehicle’s current position and
destination position. The sqrt statement has the following syntax:

sqrt(var)

16

streq

The streq function is used to compare two strings. This function takes two strings str1

and str2 as inputs and outputs true if the strings are equal and false otherwise. The
streq statement has the following syntax:

streq(str1, str2)

4.5 Scope

There are two types of scope – local and global. Identifiers declared within a function are
local only to that function and may not be used outside the funtion. Global identifiers are
declared outside any functions and may be used anywhere in the program. iDrive follows
the standard rules of static scoping.

17

Chapter 5

Project Plan

5.1 Responsibilities

There were no formal roles and responsibility assignments done since the project was done
by one person.

5.2 Methodology

The MicroC project was used as a starting point. So work began by analyzing the design
and architecture of the MicroC language. Several days were spent brainstorming how this
language could be enhanced and transformed into the initial concept of the iDrive language.
After spending sometime with MicroC it was decided to considerably trim down the scope of
the iDrive language due to time constraints and familiarity with O’Caml. Eventually the
project was implemented using an iterative methodology. The idea was to rapidly develop
a simple version of iDrive using MicroC and to iteratively improve it in small testable
steps. Each iteration was built upon the work done in previous iterations and added some
new features in the language. The steps are shown in more detail in the Project Timeline
section. Many small unit tests were created to test the features of iDrive – running these
gave visibility into what was working and what wasn’t. As testing progressed, sometimes
implementation details needed to be changed.

5.3 Software Development Environment

iDrive was written using Objective Caml Programming Language (O’Caml). OCamlLex
Lexical Analyzer (OCamllex) and OCamlYacc Syntactical Analyzer (Ocamlyacc) were used
to create the scanner and parser, respectively. The version of O’Caml used for development

18

was 3.11.0.

The project was developed on a Windows XP 32-bit workstation. No source control program
was used as this was a one person development effort. A Windows batch file Make.bat was
created to compile the source code and another batch file Cleanup.bat was created to perform
cleanup chores.

5.4 Programming Style

Since the MicroC project was utilized to build iDrive, the programming style of MicroC was
used.

5.5 Project Timeline

Here is the project timeline:

1/24-2/9 Started brainstorm language ideas
2/5 iDrive conceived
2/9 Project proposal submitted

2/9 - 2/28 Familiarize with MicroC

2/28 - 3/14 Compiled first version of iDrive with little to no customizations
3/21 Language Reference Manual submitted

3/21 - 3/28 Parsing and lexing of basic types
3/28 - 4/11 Parsing and lexing of complex types
4/11 - 4/18 Parsing and lexing of statements and expressions
4/18 - 4/20 Control statements
4/20 - 4/25 Built-in functions added
4/25 - 5/8 Logical Operators and several miscellaneous features added
3/21 - 5/19 Build and run test cases and debug issues
4/11 - 5/19 Final project report
5/16 - 5/19 Final testing, documentation, and final report

19

Chapter 6

Architectural Design

6.1 Architectural Block Diagram

20

6.2 Interfaces and Flow

As shown in the block diagram above, iDrive consists of several components such as the
scanner, the parser, the abstract syntax tree (AST), the AST interpreter, and the symbol
table. The relationship between these components is depicted in the diagram.

Essentially, the scanner receives the input source file and performs lexical analysis of the
input file. The lexical analyzer separates the input character stream and produces a stream
of tokens. Irrelevant details such as whitespace and comments are removed at this stage. If
any invalid token is captured, an exception is raised.

The parser receives the token stream from the scanner, parses these tokens, and analyzes
the structure of the program. It checks whether the program conforms to the grammar of
iDrive and generates an abstract syntax tree (AST) for the given source program. If any
syntax error is captured, a parsing exception is raised.

The AST interpreter traverses through the AST and creates the symbol tables for funtion
and variable declarations. These symbol tables are are checked in order to resolve functions
and variables, check data types, and evaluate expressions. For any invalid arguments, it
throws appropriate exceptions.

6.3 Enhancements over MicroC

The scanner, the parser, and the AST interpreter were substantially enhanced from MicroC

to support the requirements of the iDrive language. Support was added in these components
for:

• Additional simple types like boolean, decimal, and string

• Complex types like objects, vehicles, pedestrians, traffic signals, and stop signs

• Mathematical operators like exponentiation

• String concatenation

• Logical operators

• User-defined functions

• Several built-in functions to support printing, string comparision, random number
generation, and square root operation

21

Most importantly, a new type of expression rule was introduced in the parser to specially
handle the newly introduced objects and their attributes. Lastly, to minimize the complexity
of the language due to introduction of new simple types, all object attributes are internally
stored in string format. The attributes are converted to decimal format when mathematical
operations are performed on them.

22

Chapter 7

Test Plan

A test plan was created to reflect the aspects of the program that were covered in the
Language Reference Manual. Most of the test cases were generated while developing the
various features of iDrive. Creating tests in this manner allowed to create a test suite that
was comprehensive and at the same time ensured the clarity of the manual. While most
tests were geared towards validating that a certain piece of funtionality worked, certain tests
were designed to fail to make sure that various parts of the system failed properly. Still
other tests were composite tests and were designed to test multiple features at once. The
test cases used are listed below.

7.1 Test Cases

File Name Purpose of the Test
test1.iDrive Hello world program
test2.iDrive To test comments
test3.iDrive To test identifiers:

declare a global variable, define two attributes on it with the same key but
different case, and print them

test4.iDrive To test global variables:
declare a global variable, print it, update it, and print it again

test5.iDrive To test local variables:
declare a local variable, print it, update it, and print it again

test6.iDrive To test assignment of constants to variable attributes:
declare a global variable with four simple attributes and assign constant
values to the attributes in all possible forms

test7.iDrive To test default initialization of variable attributes:
declare a global variable with four attributes without initializing them,

23

print them, update them, and print them again
test8.iDrive To test custom initialization of variable attributes:

declare a global variable with four initialized attributes, print them,
update them, and print them again

test9.iDrive To test the unary ’-’ operator:
declare a global variable with two integer attribbutes, print them, perform
unary operations, and print them again

test10.iDrive To test mathematical operators:
declare a global variable with an integer attribute, perform mathematical
operations on it using mathematical operators ’+’, ’-’, ’*’, ’/’,
exponentiation operator ’ˆ’, and the built-in sqrt funtion, and print the
results of the operations. This is done twice, first with a positive integer
and then a negative integer

test11.iDrive To test mathematical operators:
declare a global variable with a decimal attribute, perform mathematical
operations on it using mathematical operators ’+’, ’-’, ’*’, ’/’,
exponentiation operator ’ˆ’, and the built-in sqrt funtion, and print the
results of the operations. This is done twice, first with a positive decimal
and then a negative decimal

test12.iDrive To test mathematical operator precedence:
declare a global variable, perform mathematical operations to test operator
precedence using mathematical operators ’+’, ’-’, ’*’, ’/’, exponentiation
operator ’ˆ’, and parentheses, and print the results of the operations

test13.iDrive To test string concatenation:
declare a global variable and perform string concatenation and addition
operations using the concatenation operator ’++’ and the addition operator
’+’, and print the results of the operations

test14.iDrive To test the built-in random function:
declare a global variable, invoke the built-in random function, and print
the results

test15.iDrive To test the boolean data type:
declare a global variable with a boolean attribute, test the boolean attribute
in several ways using if statements, and print the results

test16.iDrive To test relational operators:
declare a global variable with an integer attribute, test the relational
operators < <= > >= == != in several ways using if statements,
and print the results of the operations. This is done twice, first with a
positive integer and then a negative integer

test17.iDrive To test relational operators:

24

declare a global variable with a decimal attribute, test the relational
operators < <= > >= == != in several ways using if statements,
and print the results of the operations. This is done twice, first with a
positive decimal and then a negative decimal

test18.iDrive To test the built-in streq funtion:
declare a global variable with a string attribute, test the built-in streq
funtion using if statements, and print the results of the operations

test19.iDrive To test logical operators:
declare a global variable with a string and an integer attribute, test the
logical operators ’&&’, ’||’, ’ !’ in several ways using if statements,
and print the results of the operations

test20.iDrive To test if else statements:
declare a global variable, test the if else statement in various forms including
nested if else statements and block of statements, and print the results

test21.iDrive To test for loop:
declare a global variable, run a for loop, and print the results

test22.iDrive To test while loop:
declare a global variable, run a while loop, and print the results

test23.iDrive To test nested for loops and while loops:
declare a global variable, run all combinations of nested for loops and while
loops, and print the results

test24.iDrive To test multiple global variables:
declare global variables in various forms, print them, update them, and print
them again

test25.iDrive To test user-defined functions:
declare global variables, define a function printObject() that prints attributes
of a variable, and invoke this function to print the global variable

test26.iDrive To test user-defined functions on multiple inputs:
declare two global variables, define a function printObject() that prints
attributes of a variable, update the global variables, and invoke the
printObject() function once for each global variable to print them

test27.iDrive To test static scoping of variables:
declare a global variable and a local variable with the same name, update the
local variable, and print both the variables

test28.iDrive To test pass by value:
declare a local variable, pass the local variable to another funtion
mutateObject() (pass by value), update the variable in that function, and
print the variable just before the funtion returns to show the altered
state of the variable and just after the function returns to show the

25

unaltered state of the local variable
test29.iDrive To further test scope of a global variable:

declare a global variable, invoke another funtion mutateGlobalObject(),
update the global variable in that function, and print the variable just
before the funtion returns to show the altered state of the variable and
just after the function returns to again show the altered state of the
variable

test30.iDrive To test miscellaneous object operations:
declare a global variable and a local variable, invoke a funtion
createDuplicateAndRandomlyMutate() to create a duplicate of the local
variable, and perform miscellaneous updates to this variable

7.2 Automation

A Windows batch file RunTests.bat was created to automatically run all the test cases. This
batch file ran the iDrive interpreter on all iDrive input source files, saved the output of
each test as an output file, and compared it to the expected output file corresponding to
that test. Only if the two files matched, was the test was deemed successful. Another batch
file CleanupTests.bat was used to perform cleanup of the test output files generated after
each regression.

Since these tests only took a few seconds to run, for sometime they were run after each
source code compilation. This provided a reasonable assurance that the new code did not
break any existing and working features.

7.3 Testing Results

The following test results were generated after each run of the test suite:

>RunTests.bat

test1 passed

test10 passed

test11 passed

test12 passed

test13 passed

26

test14 failed

test15 passed

test16 passed

test17 passed

test18 passed

test19 passed

test2 passed

test20 passed

test21 passed

test22 passed

test23 passed

test24 passed

test25 passed

test26 passed

test27 passed

test28 passed

test29 passed

test3 passed

test30 passed

test4 passed

test5 passed

test6 passed

test7 passed

test8 passed

test9 passed

As expected, test14.iDrive failed almost all the time because it tested the built-in random

function in iDrive, which randomly generated an integer.

27

Chapter 8

Lessons Learned

My initial project proposal was a little too ambitious especially given the time frame, my
familiarity with O’caml, a full-time job, and a single resource working on the project. I
believe it was beneficial for me to realize this early on and accordingly change the course of
action. I cut down quite a bit from the original scope of the language by eliminating almost
all the built-in functions that I had initially proposed. In the end I implemented a lighter
version of iDrive instead of the full-fledged “Java-like” iDrive without compromising much
functionality and ease of use. The language is now a simple object-oriented language that
focuses on simulating an environment where cars drive without a need for human interven-
tion in the presence of other objects like cars, pedestrians, traffic signals, and stop signs.

Despite the fact that I realized early how challenging designing and developing a language
could be using O’Caml, I still was unable to get the AST to bytecode compiler to work. I
think too much time was spent on understanding O’Caml (and eliminating misunerstandings
of the language) and getting the AST interpreter to work even with the slimmed down ver-
sion of iDrive. The smallest feature of the language sometimes took almost an entire day to
implement. If it were not for the MicroC example and the iterative approach of development
that I implemented I do not think I could have developed iDrive in the given time. The
O’Caml learning curve is just too steep, hence this project work is perhaps best suited for a
team of 2-3 individuals. I have in the past collaborated with other CVN students to work
on course projects and I feel it would have been beneficial to work as part of a team and
having some divison of labor given the extensiveness of the project.

I was not able to master O’Caml like any other new language that I have picked up in the
past, nonetheless, I learned that O’Caml is a great language when it comes to creating pro-
gramming languages because of its strong data type system and the way its functions are
created and used. I also learned how simple each layer of indirection within an interpreter
can be and how to logically reason and resolve the shift/reduce and reduce/reduce conflicts.

28

The concepts taught in class guided me through every layer in the project.

Creating a test suite early on proved to be extremely helpful. The automated regression
tests were invaluable in finding bugs. I found it best to write test cases for new features
immediately after the features had been written. This process of adding features and imme-
diately testing provided more assurance that the interpreter is working within expectations.

My advice to others is to get a simple version of the lanaguage working first before delv-
ing into complex details. It was very beneficial for me to develop the basic features of the
language first. After which it became clear how to expand the language and build up the
complexity iteratively. Additionally, I would highly recommend others to get familiar with
the syntax of O’Caml very early in the design. I would also advise others to work in a team
– I feel this may be the ultimate key to success of this project.

Overall I learned a lot about the inner workings of compilers which I was not aware of
earlier. I also learned about the many considerations that go into designing a programming
language such as scope, syntax, and structure. Furthermore I enjoyed learning O’Caml
– a new and fundamentally very different type of language. I gratefully acknowledge the
valuable suggestions and insights provided by the course professor that helped me work on
this project.

29

Chapter 9

Appendix

9.1 scanner.mll

{ open Parser }

rule token = parse

[’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf } (* White space characters *)

| "/*" { comment lexbuf } (* Multiline Comments *)

| "//" { linecomment lexbuf } (* Inline Comments *)

| ’(’ { LPAREN } (* Left parenthesis *)

| ’)’ { RPAREN } (* Right parenthesis *)

| ’{’ { LBRACE } (* Left brace *)

| ’}’ { RBRACE } (* Left brace *)

| ’;’ { SEMI } (* Semicolon, to separate statements *)

| ’,’ { COMMA } (* Comma, to separate arguments within a function *)

| ’+’ { PLUS } (* Addition mathematical operator *)

| ’-’ { MINUS } (* Subtraction mathematical operator *)

| ’*’ { TIMES } (* Multiplication mathematical operator *)

| ’/’ { DIVIDE } (* Division mathematical operator *)

| ’^’ { POW } (* Exponentiation mathematical operator *)

| ’=’ { ASSIGN } (* Assignment operator *)

| ’.’ { DEREFERENCE } (* Dereference an attribute of an object *)

| "==" { EQ } (* Equality relational operator *)

| "!=" { NEQ } (* Inequality relational operator *)

| ’<’ { LT } (* Less than relational operator *)

| "<=" { LEQ } (* Less than or equal to relational operator *)

| ’>’ { GT } (* Greater than relational operator *)

30

| ">=" { GEQ } (* Greater than or equal to relational operator *)

| "!" { NOT } (* Not logical operator *)

| "&&" { AND } (* And logical operator *)

| "||" { OR } (* Or logical operator *)

| "++" { CONCAT } (* String concatenation operator *)

| "if" { IF } (* If statement *)

| "else" { ELSE } (* Part of if statement *)

| "for" { FOR } (* For loop *)

| "while" { WHILE } (* While Loop *)

| "function" { FUNCTION } (* To declare user-defined funtions *)

| "vehicle" { VEHICLE } (* Vehicle object *)

| "pedestrian" { PEDESTRIAN } (* Pedestrian object *)

| "trafficsignal" { TRAFFICSIGNAL } (* Traffic Signal object *)

| "stopsign" { STOPSIGN } (* Stop sign object *)

| "object" { OBJECT } (* Simple object *)

| "boolean" { BOOLEAN } (* Boolean data type *)

| "int" { INT } (* Interger data type *)

| "decimal" { DECIMAL } (* Float data type *)

| "string" { STRING } (* String data type *)

| "print" { PRINT } (* Built-in print function *)

| "random" { RANDOM } (* Built-in random function *)

| "sqrt" { SQRT } (* Built-in sqrt function *)

| "streq" { STREQ } (* Built-in streq function *)

| "true" as lxm { LITERAL(lxm) } (* Boolean *)

| "false" as lxm { LITERAL(lxm) } (* Boolean *)

| [’0’-’9’]+ as lxm { LITERAL(lxm) } (* Integers *)

| [’0’-’9’]+ ’.’ [’0’-’9’]* (’e’ (’+’|’-’)? [’0’-’9’]+)?

as lxm { LITERAL(lxm) } (* Floats *)

| ’.’ [’0’-’9’]+ (’e’ (’+’|’-’)? [’0’-’9’]+)?

as lxm { LITERAL(lxm) } (* Floats *)

| [’0’-’9’]+ ’e’ (’+’|’-’)? [’0’-’9’]+

as lxm { LITERAL(lxm) } (* Floats *)

| [’a’-’z’ ’A’-’Z’][’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]*

31

as lxm { ID(lxm) } (* Identifiers *)

| ’\"’ [^ ’\"’]* ’\"’

as lxm { STR(lxm) } (* Strings *)

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse

"*/" { token lexbuf }

| _ { comment lexbuf }

and linecomment = parse

[’\r’ ’\n’] { token lexbuf }

| _ { linecomment lexbuf }

9.2 parser.mly

%{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA

%token PLUS MINUS TIMES DIVIDE POW SQRT ASSIGN

%token EQ NEQ STREQ LT LEQ GT GEQ CONCAT

%token NOT AND OR

%token IF ELSE FOR WHILE

%token BOOLEAN INT DECIMAL STRING

%token <string> LITERAL

%token <string> ID

%token <string> STR

%token EOF

%token FUNCTION VEHICLE PEDESTRIAN TRAFFICSIGNAL STOPSIGN OBJECT

%token DEREFERENCE

%token PRINT RANDOM

%nonassoc NOELSE

%nonassoc ELSE

%nonassoc RANDOM

32

%left ASSIGN

%left NOT AND OR

%left EQ NEQ STREQ

%left LT GT LEQ GEQ

%left CONCAT

%left PLUS MINUS

%left TIMES DIVIDE

%left POW SQRT

%nonassoc NEG

%start program

%type <Ast.program> program

%%

program:

/* nothing */ { [], [] }

| program vdecl { ($2 :: fst $1), snd $1 }

| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:

FUNCTION ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE

{ { fname = $2;

formals = $4;

locals = List.rev $7;

body = List.rev $8 } }

formals_opt:

/* nothing */ { [] }

| formal_list { List.rev $1 }

formal_list:

ID { [$1] }

| formal_list COMMA ID { $3 :: $1 }

vdecl_list:

/* nothing */ { [] }

| vdecl_list vdecl { $2 :: $1 }

vdecl:

33

OBJECT ID LPAREN attr_opt RPAREN SEMI { { vtype = "Object";

vname = $2; vattrs = $4;} }

| VEHICLE ID LPAREN attr_opt RPAREN SEMI { { vtype = "Vehicle";

vname = $2; vattrs = $4;} }

| PEDESTRIAN ID LPAREN attr_opt RPAREN SEMI { { vtype = "Pedestrian";

vname = $2; vattrs = $4;} }

| TRAFFICSIGNAL ID LPAREN attr_opt RPAREN SEMI { { vtype = "TrafficSignal";

vname = $2; vattrs = $4;} }

| STOPSIGN ID LPAREN attr_opt RPAREN SEMI { { vtype = "StopSign";

vname = $2; vattrs = $4;} }

attr_opt:

/* nothing */ { [] }

| attr_list { $1 }

attr_list:

attr { [$1] }

| attr_list COMMA attr { $3 :: $1 }

attr:

STRING ID ASSIGN STR { { key = $2;

value = String.sub $4 1 ((String.length $4)-2);} }

| STRING ID { { key = $2; value = "";} }

| DECIMAL ID ASSIGN MINUS LITERAL { { key = $2;

value = string_of_float (-.(float_of_string $5));} }

| DECIMAL ID ASSIGN LITERAL { { key = $2; value = $4;} }

| DECIMAL ID { { key = $2; value = "0.0";} }

| INT ID ASSIGN MINUS LITERAL { { key = $2;

value = string_of_float (-.(float_of_string $5));} }

| INT ID ASSIGN LITERAL { { key = $2; value = $4;} }

| INT ID { { key = $2; value = "0";} }

| BOOLEAN ID ASSIGN LITERAL { { key = $2; value = $4;} }

34

| BOOLEAN ID { { key = $2; value = "true";} }

stmt_list:

/* nothing */ { [] }

| stmt_list stmt { $2 :: $1 }

stmt:

expr SEMI { Expr($1) }

| LBRACE stmt_list RBRACE { Block(List.rev $2) }

| IF LPAREN objexpr RPAREN stmt %prec NOELSE

{ If($3, $5, Block([])) }

| IF LPAREN objexpr RPAREN stmt ELSE stmt

{ If($3, $5, $7) }

| FOR LPAREN objexpr_opt SEMI objexpr_opt SEMI objexpr_opt RPAREN stmt

{ For($3, $5, $7, $9) }

| WHILE LPAREN objexpr RPAREN stmt { While($3, $5) }

| PRINT objexpr SEMI { Print($2) }

expr:

ID { Id($1) }

| ID DEREFERENCE ID ASSIGN objexpr { Assign($1, $3, $5) }

| ID LPAREN actuals_opt RPAREN { Call($1, $3) }

| LPAREN expr RPAREN { $2 }

objexpr_opt:

/* nothing */ { Noexpr }

| objexpr { $1 }

objexpr:

LITERAL { Literal($1) }

| STR { Str($1) }

| MINUS objexpr %prec NEG { Neg($2) }

| objexpr PLUS objexpr { Binop($1, Add, $3) }

35

| objexpr MINUS objexpr { Binop($1, Sub, $3) }

| objexpr TIMES objexpr { Binop($1, Mult, $3) }

| objexpr DIVIDE objexpr { Binop($1, Div, $3) }

| objexpr POW objexpr { Binop($1, Pow, $3) }

| objexpr EQ objexpr { Binop($1, Equal, $3) }

| objexpr NEQ objexpr { Binop($1, Neq, $3) }

| objexpr LT objexpr { Binop($1, Less, $3) }

| objexpr LEQ objexpr { Binop($1, Leq, $3) }

| objexpr GT objexpr { Binop($1, Greater, $3) }

| objexpr GEQ objexpr { Binop($1, Geq, $3) }

| objexpr CONCAT objexpr { Binop($1, Concat, $3) }

| objexpr AND objexpr { Binop($1, And, $3) }

| objexpr OR objexpr { Binop($1, Or, $3) }

| STREQ LPAREN objexpr COMMA objexpr RPAREN

{ Streq($3, $5) }

| NOT objexpr { Not($2) }

| SQRT objexpr { Sqrt($2) }

| RANDOM objexpr { Random($2) }

| ID DEREFERENCE ID ASSIGN objexpr { ObjAssign($1, $3, $5) }

| ID DEREFERENCE ID { Attribute($1, $3) }

| LPAREN objexpr RPAREN { $2 }

actuals_opt:

/* nothing */ { [] }

| actuals_list { List.rev $1 }

actuals_list:

expr { [$1] }

| actuals_list COMMA expr { $3 :: $1 }

9.3 ast.mli

type op = Add | Sub | Mult | Div | Pow | Equal | Neq | Less | Leq | Greater

| Geq | Concat | And | Or

(* object expressions *)

type objexpr =

Literal of string

| Noexpr

36

| Str of string

| Neg of objexpr

| Binop of objexpr * op * objexpr

| Streq of objexpr * objexpr

| Not of objexpr

| Sqrt of objexpr

| Random of objexpr

| ObjAssign of string * string * objexpr

| Attribute of string * string

(* expressions *)

type expr =

Id of string

| Assign of string * string * objexpr

| Call of string * expr list

(* statements *)

type stmt =

Expr of expr

| Block of stmt list

| If of objexpr * stmt * stmt

| For of objexpr * objexpr * objexpr * stmt

| While of objexpr * stmt

| Print of objexpr

(* variable attribute declarations *)

type attr_decl = {

key : string; (* attribute key *)

value : string; (* attribute value *)

}

(* variable declarations *)

type var_decl = {

vtype : string; (* variable type *)

vname : string; (* variable name *)

vattrs : attr_decl list; (* variable attributes *)

}

(* function declarations *)

type func_decl = {

37

fname : string; (* function name *)

formals : string list; (* function arguments *)

locals : var_decl list; (* list of local variables *)

body : stmt list; (* list of statements *)

}

(* the program *)

type program = var_decl list * func_decl list

9.4 interpret.ml

open Ast

module NameMap = Map.Make(struct

type t = string

let compare x y = Pervasives.compare x y

end)

exception ReturnException of string NameMap.t * string NameMap.t NameMap.t

(* Main entry point: run a program *)

let run (vars, funcs) =

(* Put function declarations in a symbol table *)

let func_decls = List.fold_left

(fun funcs fdecl ->

if NameMap.mem fdecl.fname funcs then

raise (Failure ("function " ^ fdecl.fname ^

" is defined more than once!"));

NameMap.add fdecl.fname fdecl funcs)

NameMap.empty funcs

in

(* Put variable declarations in a symbol table *)

let var_decls = List.fold_left

38

(fun globals vdecl ->

let attrs = List.fold_left

(fun attr_map attr_decl ->

NameMap.add attr_decl.key attr_decl.value attr_map)

NameMap.empty vdecl.vattrs in

if NameMap.mem vdecl.vname globals then

raise (Failure ("variable " ^ vdecl.vname ^

" is defined more than once!"));

NameMap.add vdecl.vname attrs globals;)

in

(* Invoke a function and return an updated global symbol table *)

let rec call fdecl actuals globals =

(* Evaluate an object expression and return (value, updated environment) *)

let rec objeval env = function

Literal(i) -> i, env

| Noexpr -> "1", env (* must be a string;

must be non-zero for the for loop predicate *)

| Str(str) -> (String.sub str 1 ((String.length str)-2)), env

| Neg(e) ->

let v, env = objeval env e in

string_of_float(-.(float_of_string(v))), env

| Binop(e1, op, e2) ->

let v1, env = objeval env e1 in

let v2, env = objeval env e2 in

let boolean_to_string i = if i then "true" else "false" in

(match op with

Add -> string_of_float(float_of_string(v1) +. float_of_string(v2))

| Sub -> string_of_float(float_of_string(v1) -. float_of_string(v2))

39

| Mult -> string_of_float(float_of_string(v1) *. float_of_string(v2))

| Div -> string_of_float(float_of_string(v1) /. float_of_string(v2))

| Pow -> string_of_float(float_of_string(v1) ** float_of_string(v2))

| Equal -> boolean_to_string(float_of_string(v1) = float_of_string(v2))

| Neq -> boolean_to_string(float_of_string(v1) <> float_of_string(v2))

| Less -> boolean_to_string(float_of_string(v1) < float_of_string(v2))

| Leq -> boolean_to_string(float_of_string(v1) <= float_of_string(v2))

| Greater -> boolean_to_string(float_of_string(v1) > float_of_string(v2))

| Geq -> boolean_to_string(float_of_string(v1) >= float_of_string(v2))

| Concat -> String.concat "" (v1::(v2::[]))

| And -> if (0 = (String.compare v1 "true")

&& 0 = (String.compare v2 "true")) then "true" else "false"

| Or -> if (0 = (String.compare v1 "true")

|| 0 = (String.compare v2 "true")) then "true" else "false"), env

| Streq(e1, e2) ->

let v1, env = objeval env e1 in

let v2, env = objeval env e2 in

let int_to_string i = if (i = 0) then "true" else "false" in

int_to_string (String.compare v1 v2), env

| Not(e) ->

let v, env = objeval env e in

let not_e i = if (0 = (String.compare i "true")) then "false" else "true" in

not_e (v), env

| Sqrt(e) ->

let v, env = objeval env e in

40

string_of_float(sqrt(float_of_string(v))), env

| Random(e) ->

let v, env = objeval env e in

string_of_int(Random.self_init (); Random.int (int_of_string(v))), env

| ObjAssign(var, attr, e) ->

let v, (locals, globals) = objeval env e in

if NameMap.mem var locals then

v, (NameMap.add var

(NameMap.add attr v (NameMap.find var locals)) locals, globals)

else if NameMap.mem var globals then

v, (locals, NameMap.add var

(NameMap.add attr v (NameMap.find var globals)) globals)

else raise (Failure ("undeclared identifier " ^ var))

| Attribute(var, attr) ->

let (locals, globals) = env in

if NameMap.mem var locals then

if NameMap.mem attr (NameMap.find var locals) then

NameMap.find attr (NameMap.find var locals),(locals, globals)

else raise (Failure ("undeclared attribute " ^ attr ^

" for local variable " ^ var))

else if NameMap.mem var globals then

if NameMap.mem attr (NameMap.find var globals) then

NameMap.find attr (NameMap.find var globals),(locals, globals)

else raise (Failure ("undeclared attribute " ^ attr ^

" for global variable " ^ var))

else raise (Failure ("undeclared identifier " ^ var))

in

(* Evaluate an expression and return (value, updated environment) *)

let rec eval env = function

Id(var) ->

let locals, globals = env in

if NameMap.mem var locals then

(NameMap.find var locals), env

41

else if NameMap.mem var globals then

(NameMap.find var globals), env

else raise (Failure ("undeclared identifier " ^ var))

| Assign(var, attr, e) ->

let v, (locals, globals) = objeval env e in

if NameMap.mem var locals then

NameMap.empty, (NameMap.add var (NameMap.add attr v

(NameMap.find var locals)) locals, globals)

else if NameMap.mem var globals then

NameMap.empty, (locals, NameMap.add var

(NameMap.add attr v (NameMap.find var globals)) globals)

else raise (Failure ("undeclared identifier " ^ var))

| Call(f, actuals) ->

let fdecl =

try NameMap.find f func_decls

with Not_found -> raise (Failure ("undefined function " ^ f))

in

let actuals, env = List.fold_left

(fun (actuals, env) actual ->

let v, env = eval env actual in v :: actuals, env)

([], env) actuals

in

let (locals, globals) = env in

try

let globals = call fdecl actuals globals in

NameMap.empty, (locals, globals)

with ReturnException(v, globals) -> v, (locals, globals)

in

(* Execute a statement and return an updated environment *)

42

let rec exec env = function

Block(stmts) -> List.fold_left exec env stmts

| Expr(e) -> let _, env = eval env e in env

| If(e, s1, s2) ->

let v, env = objeval env e in

exec env (if (0 = (String.compare v "true")) then s1 else s2)

| While(e, s) ->

let rec loop env =

let v, env = objeval env e in

if (0 = (String.compare v "true")) then loop (exec env s) else env

in loop env

| For(e1, e2, e3, s) ->

let _, env = objeval env e1 in

let rec loop env =

let v, env = objeval env e2 in

if (0 = (String.compare v "true")) then

let _, env = objeval (exec env s) e3 in

loop env

else

env

in loop env

| Print(e) ->

let str, env = objeval env e in

print_endline str; env

in

(* Enter the function: bind actual values to formal arguments *)

let locals =

try List.fold_left2

(fun locals formal actual -> NameMap.add formal actual locals)

NameMap.empty fdecl.formals actuals

43

with Invalid_argument(_) ->

raise (Failure ("wrong number of arguments passed to " ^ fdecl.fname))

in

(* Add local variables to the symbol table *)

let locals = var_decls locals fdecl.locals in

(* Execute each statement in sequence, return updated global symbol table *)

snd (List.fold_left exec (locals, globals) fdecl.body)

in

(* Run a program: add global variables to the symbol table, find and run "main" *)

let globals = var_decls NameMap.empty vars in

try

call (NameMap.find "main" func_decls) [] globals

with Not_found -> raise (Failure ("did not find the main() function"))

9.5 iDrive.ml

(* read the input source file, lex it, parse it, and intepret it *)

let _ =

let lexbuf = Lexing.from_channel (open_in Sys.argv.(1)) in

let program = Parser.program Scanner.token lexbuf in

ignore (Interpret.run program)

9.6 Make.bat

@echo off

44

rem create scanner.ml

ocamllex scanner.mll

rem create parser.ml and parser.mli

ocamlyacc parser.mly

rem compile AST types

ocamlc -c ast.mli

rem compile parser types

ocamlc -c parser.mli

rem compile the scanner

ocamlc -c scanner.ml

rem compile the parser

ocamlc -c parser.ml

rem compile the interpreter

ocamlc -c interpret.ml

rem compile iDrive

ocamlc -c iDrive.ml

rem package the executable

ocamlc -o iDrive.exe parser.cmo scanner.cmo interpret.cmo iDrive.cmo

echo.

9.7 Cleanup.bat

@echo off

rem remove compiled output files

del scanner.ml

del parser.mli

del parser.ml

del *.cmo

45

del *.cmi

del iDrive.exe

9.8 RunTests.bat

@echo off

rem iDrive test1.iDrive > test1.out

rem fc test1.out test1.expectedout > test1.diff

rem loop over all iDrive files in the current folder

for %%X in (*.iDrive) do (

rem compile the file and send output to .out file

iDrive %%~nX.iDrive > %%~nX.out

rem compare the .out file with .expectedout file

fc %%~nX.out %%~nX.expectedout > %%~nX.diff

rem in case of mismatch show failure message

IF ERRORLEVEL 1 echo %%~nX failed

rem in case of match show success message

IF ERRORLEVEL 0 echo %%~nX passed

)

9.9 CleanupTests.bat

@echo off

rem remove testing output

del *.out

del *.diff

46

9.10 Representative Program

Here is a representative program that demonstrates a simple iDrive program, which first
creates a simple vehicle object and subsequently creates other objects. As the car heads
from its source position to its destination position, the program determines the flow of traffic
and outputs the outcome of interactions between these objects:

/* This is the vehicle object that needs to be transported from

source position to destination position */

vehicle myCar(decimal currentXPosition=0, decimal currentYPosition=0,

decimal currentSpeed=0, string heading=‘‘North’’,

decimal destXPosition=0, decimal destYPosition=50,

decimal distanceToDest, boolean isClearToGo = true);

/* This is an object that stores global variables */

object global(int rand, decimal acceleration = 5, decimal deceleration = 5);

/* The main() function must always be present.

It is the entry point for an iDrive program much like C and Java.*/

function main()

{
print(‘‘Current speed is ’’ ++ myCar.currentSpeed ++ ‘‘ miles/hr’’);

print(‘‘Current position is (’’ ++ myCar.currentXPosition ++ ‘‘, ’’

++ myCar.currentYPosition ++ ‘‘)’’);

print(‘‘Destination position is (’’ ++ myCar.destXPosition ++ ‘‘, ’’

++ myCar.destYPosition ++ ‘‘)’’);

print(‘‘Current heading is ’’ ++ myCar.heading);

distanceToDestination();

print(‘‘’’);

while (myCar.distanceToDest > 0.5) {

/* myCar.isClearToGo will take into account pedestrians, traffic signals,

stop signs, and other vehicles on the roadway */

if (myCar.isClearToGo) {

47

/* To simulate such input in absence of sensors such as cameras,

radar, and GPS, the program creates these objects randomly and

incrementally. */

global.rand = random(5); {
if (global.rand == 0 && myCar.currentSpeed >= 20) {

myCar.isClearToGo = false;

global.rand = random(4);

if (global.rand == 0) {
createNewCar();

global.deceleration = 20;

print(‘‘DECELERATING QUICKLY DUE TO AN UNEXPECTED

APPROACHING CAR’’);

}
if (global.rand == 1) {

createNewPedestrian();

global.deceleration = 20;

print(‘‘DECELERATING QUICKLY DUE TO AN UNEXPECTED

PEDESTRIAN’’);

}
if (global.rand == 2) {

createNewTrafficSignal();

global.deceleration = 5;

print(‘‘DECELERATING DUE TO A TRAFFIC SIGNAL UP

AHEAD’’);

}
if (global.rand == 3) {

createNewStopSign();

global.deceleration = 5;

print(‘‘DECELERATING DUE TO A STOP SIGN UP AHEAD’’);

}
print(‘‘’’);

}
}

if (myCar.isClearToGo) {
if (myCar.currentSpeed < 45) {

accelerate();

48

}

updateCurrentPosition();

distanceToDestination();

}
else {

if (myCar.currentSpeed > 0) {
decelerate();

}
else {

global.deceleration = 5;

myCar.isClearToGo = true;

accelerate();

}

updateCurrentPosition();

distanceToDestination();

}
print(‘‘’’);

}

if (myCar.currentSpeed == 0) {
print(‘‘Please walk this distance, its good for your health!!!’’);

print(‘‘’’);

}
else {

print(‘‘Approaching destination’’);

print(‘‘’’);

while (myCar.currentSpeed > 0 && myCar.distanceToDest > 0.1) {
decelerate();

updateCurrentPosition();

distanceToDestination();

print(‘‘’’);

}
print(‘‘Arrived at destination’’);

}
}

/* Below are all the user defined functions */

49

/* accelerate increases the car speed by a specified amount */

function accelerate()

{
myCar.currentSpeed = myCar.currentSpeed + global.acceleration;

if (myCar.currentSpeed > 45) {
myCar.currentSpeed = 45;

}
print(‘‘Current speed increased to ’’ ++ myCar.currentSpeed

++ ‘‘ miles/hr’’);

}

/* decelerate decreases the car speed by a specified amount */

function decelerate()

{
myCar.currentSpeed = myCar.currentSpeed - global.deceleration;

if (myCar.currentSpeed < 0) {
myCar.currentSpeed = 0;

}
print(‘‘Current speed decreased to ’’ ++ myCar.currentSpeed

++ ‘‘ miles/hr’’);

}

/* updateCurrentPosition updates the current position of the car taking current

speed into account */

function updateCurrentPosition()

{
if (streq(myCar.heading, ‘‘North’’)) {

myCar.currentXPosition = 0;

myCar.currentYPosition = myCar.currentYPosition +

(myCar.currentSpeed / 3600) * 20;

}
if (streq(myCar.heading, ‘‘East’’)) {

myCar.currentXPosition = myCar.currentXPosition +

(myCar.currentSpeed / 3600) * 20;

myCar.currentYPosition = 0;

}
if (streq(myCar.heading, ‘‘West’’)) {

50

myCar.currentXPosition = myCar.currentXPosition -

(myCar.currentSpeed / 3600) * 20;

myCar.currentYPosition = 0;

}
if (streq(myCar.heading, ‘‘South’’)) {

myCar.currentXPosition = 0;

myCar.currentYPosition = myCar.currentYPosition -

(myCar.currentSpeed / 3600) * 20;

}

print(‘‘Current position is (’’ ++ myCar.currentXPosition ++ ‘‘, ’’

++ myCar.currentYPosition ++ ‘‘)’’);

}

/* distanceToDestination updates the distance left to the destination position

*/

function distanceToDestination()

{
myCar.distanceToDest =

sqrt((myCar.destXPosition - myCar.currentXPosition) ^ 2

+ (myCar.destYPosition - myCar.currentYPosition) ^ 2);

print(‘‘Current distance from destination = ’’ ++ myCar.distanceToDest

++ ‘‘ miles’’);

}

/* createNewCar creates a new vehicle object */

function createNewCar()

{
vehicle newCar();

}

/* createNewPedestrian creates a new pedestrian object */

function createNewPedestrian()

{
pedestrian newPedestrian();

}

51

/* createNewTrafficSignal creates a new traffic signal object */

function createNewTrafficSignal()

{
trafficsignal newTrafficSignal();

}

/* createNewStopSign creates a new stop sign object */

function createNewStopSign()

{
stopsign newStopSign();

}

9.11 Representative Program Output

Current speed is 0 miles/hr

Current position is (0, 0)

Destination position is (0, 50)

Current heading is North

Current distance from destination = 50. miles

Current speed increased to 5. miles/hr

Current position is (0, 0.0277777777778)

Current distance from destination = 49.9722222222 miles

Current speed increased to 10. miles/hr

Current position is (0, 0.0833333333334)

Current distance from destination = 49.9166666667 miles

Current speed increased to 15. miles/hr

Current position is (0, 0.166666666667)

Current distance from destination = 49.8333333333 miles

Current speed increased to 20. miles/hr

Current position is (0, 0.277777777778)

Current distance from destination = 49.7222222222 miles

Current speed increased to 25. miles/hr

52

Current position is (0, 0.416666666667)

Current distance from destination = 49.5833333333 miles

Current speed increased to 30. miles/hr

Current position is (0, 0.583333333334)

Current distance from destination = 49.4166666667 miles

Current speed increased to 35. miles/hr

Current position is (0, 0.777777777778)

Current distance from destination = 49.2222222222 miles

Current speed increased to 40. miles/hr

Current position is (0, 1.)

Current distance from destination = 49. miles

Current speed increased to 45. miles/hr

Current position is (0, 1.25)

Current distance from destination = 48.75 miles

DECELERATING DUE TO A STOP SIGN UP AHEAD

Current speed decreased to 40. miles/hr

Current position is (0, 1.47222222222)

Current distance from destination = 48.5277777778 miles

Current speed decreased to 35. miles/hr

Current position is (0, 1.66666666666)

Current distance from destination = 48.3333333333 miles

Current speed decreased to 30. miles/hr

Current position is (0, 1.83333333333)

Current distance from destination = 48.1666666667 miles

Current speed decreased to 25. miles/hr

Current position is (0, 1.97222222222)

Current distance from destination = 48.0277777778 miles

Current speed decreased to 20. miles/hr

Current position is (0, 2.08333333333)

Current distance from destination = 47.9166666667 miles

53

Current speed decreased to 15. miles/hr

Current position is (0, 2.16666666666)

Current distance from destination = 47.8333333333 miles

Current speed decreased to 10. miles/hr

Current position is (0, 2.22222222222)

Current distance from destination = 47.7777777777 miles

Current speed decreased to 5. miles/hr

Current position is (0, 2.25)

Current distance from destination = 47.75 miles

Current speed decreased to 0. miles/hr

Current position is (0, 2.25)

Current distance from destination = 47.75 miles

Current speed increased to 5. miles/hr

Current position is (0, 2.27777777778)

Current distance from destination = 47.7222222223 miles

Current speed increased to 10. miles/hr

Current position is (0, 2.33333333334)

Current distance from destination = 47.6666666667 miles

Current speed increased to 15. miles/hr

Current position is (0, 2.41666666667)

Current distance from destination = 47.5833333333 miles

Current speed increased to 20. miles/hr

Current position is (0, 2.52777777778)

Current distance from destination = 47.4722222222 miles

DECELERATING DUE TO A STOP SIGN UP AHEAD

Current speed decreased to 15. miles/hr

Current position is (0, 2.61111111111)

Current distance from destination = 47.3888888889 miles

Current speed decreased to 10. miles/hr

54

Current position is (0, 2.66666666667)

Current distance from destination = 47.3333333333 miles

Current speed decreased to 5. miles/hr

Current position is (0, 2.69444444445)

Current distance from destination = 47.3055555556 miles

Current speed decreased to 0. miles/hr

Current position is (0, 2.69444444445)

Current distance from destination = 47.3055555556 miles

Current speed increased to 5. miles/hr

Current position is (0, 2.72222222223)

Current distance from destination = 47.2777777778 miles

Current speed increased to 10. miles/hr

Current position is (0, 2.77777777779)

Current distance from destination = 47.2222222222 miles

Current speed increased to 15. miles/hr

Current position is (0, 2.86111111112)

Current distance from destination = 47.1388888889 miles

Current speed increased to 20. miles/hr

Current position is (0, 2.97222222223)

Current distance from destination = 47.0277777778 miles

Current speed increased to 25. miles/hr

Current position is (0, 3.11111111112)

Current distance from destination = 46.8888888889 miles

Current speed increased to 30. miles/hr

Current position is (0, 3.27777777779)

Current distance from destination = 46.7222222222 miles

Current speed increased to 35. miles/hr

Current position is (0, 3.47222222223)

Current distance from destination = 46.5277777778 miles

Current speed increased to 40. miles/hr

55

Current position is (0, 3.69444444445)

Current distance from destination = 46.3055555556 miles

Current speed increased to 45. miles/hr

Current position is (0, 3.94444444445)

Current distance from destination = 46.0555555555 miles

Current position is (0, 4.19444444445)

Current distance from destination = 45.8055555556 miles

Current position is (0, 4.44444444445)

Current distance from destination = 45.5555555556 miles

Current position is (0, 4.69444444445)

Current distance from destination = 45.3055555556 miles

Current position is (0, 4.94444444445)

Current distance from destination = 45.0555555556 miles

Current position is (0, 5.19444444445)

Current distance from destination = 44.8055555556 miles

Current position is (0, 5.44444444445)

Current distance from destination = 44.5555555556 miles

Current position is (0, 5.69444444445)

Current distance from destination = 44.3055555556 miles

Current position is (0, 5.94444444445)

Current distance from destination = 44.0555555556 miles

Current position is (0, 6.19444444445)

Current distance from destination = 43.8055555555 miles

DECELERATING QUICKLY DUE TO AN UNEXPECTED APPROACHING CAR

Current speed decreased to 25. miles/hr

Current position is (0, 6.33333333334)

Current distance from destination = 43.6666666667 miles

56

Current speed decreased to 5. miles/hr

Current position is (0, 6.36111111112)

Current distance from destination = 43.6388888889 miles

Current speed decreased to 0 miles/hr

Current position is (0, 6.36111111112)

Current distance from destination = 43.6388888889 miles

Current speed increased to 5. miles/hr

Current position is (0, 6.3888888889)

Current distance from destination = 43.611111111 miles

Current speed increased to 10. miles/hr

Current position is (0, 6.44444444446)

Current distance from destination = 43.5555555555 miles

Current speed increased to 15. miles/hr

Current position is (0, 6.52777777779)

Current distance from destination = 43.4722222222 miles

Current speed increased to 20. miles/hr

Current position is (0, 6.6388888889)

Current distance from destination = 43.3611111111 miles

DECELERATING QUICKLY DUE TO AN UNEXPECTED APPROACHING CAR

Current speed decreased to 0. miles/hr

Current position is (0, 6.6388888889)

Current distance from destination = 43.3611111111 miles

Current speed increased to 5. miles/hr

Current position is (0, 6.66666666668)

Current distance from destination = 43.3333333332 miles

Current speed increased to 10. miles/hr

Current position is (0, 6.72222222224)

Current distance from destination = 43.2777777777 miles

Current speed increased to 15. miles/hr

Current position is (0, 6.80555555557)

57

Current distance from destination = 43.1944444444 miles

Current speed increased to 20. miles/hr

Current position is (0, 6.91666666668)

Current distance from destination = 43.0833333333 miles

DECELERATING QUICKLY DUE TO AN UNEXPECTED APPROACHING CAR

Current speed decreased to 0. miles/hr

Current position is (0, 6.91666666668)

Current distance from destination = 43.0833333333 miles

Current speed increased to 5. miles/hr

Current position is (0, 6.94444444446)

Current distance from destination = 43.0555555555 miles

Current speed increased to 10. miles/hr

Current position is (0, 7.00000000002)

Current distance from destination = 43. miles

Current speed increased to 15. miles/hr

Current position is (0, 7.08333333335)

Current distance from destination = 42.9166666667 miles

Current speed increased to 20. miles/hr

Current position is (0, 7.19444444446)

Current distance from destination = 42.8055555554 miles

DECELERATING DUE TO A TRAFFIC SIGNAL UP AHEAD

Current speed decreased to 15. miles/hr

Current position is (0, 7.27777777779)

Current distance from destination = 42.7222222222 miles

Current speed decreased to 10. miles/hr

Current position is (0, 7.33333333335)

Current distance from destination = 42.6666666667 miles

Current speed decreased to 5. miles/hr

Current position is (0, 7.36111111113)

58

Current distance from destination = 42.6388888889 miles

Current speed decreased to 0. miles/hr

Current position is (0, 7.36111111113)

Current distance from destination = 42.6388888889 miles

Current speed increased to 5. miles/hr

Current position is (0, 7.38888888891)

Current distance from destination = 42.6111111111 miles

Current speed increased to 10. miles/hr

Current position is (0, 7.44444444447)

Current distance from destination = 42.5555555555 miles

Current speed increased to 15. miles/hr

Current position is (0, 7.5277777778)

Current distance from destination = 42.4722222222 miles

Current speed increased to 20. miles/hr

Current position is (0, 7.63888888891)

Current distance from destination = 42.3611111111 miles

DECELERATING DUE TO A TRAFFIC SIGNAL UP AHEAD

Current speed decreased to 15. miles/hr

Current position is (0, 7.72222222224)

Current distance from destination = 42.2777777778 miles

Current speed decreased to 10. miles/hr

Current position is (0, 7.7777777778)

Current distance from destination = 42.2222222222 miles

Current speed decreased to 5. miles/hr

Current position is (0, 7.80555555558)

Current distance from destination = 42.1944444444 miles

Current speed decreased to 0. miles/hr

Current position is (0, 7.80555555558)

Current distance from destination = 42.1944444444 miles

59

Current speed increased to 5. miles/hr

Current position is (0, 7.83333333336)

Current distance from destination = 42.1666666666 miles

Current speed increased to 10. miles/hr

Current position is (0, 7.88888888892)

Current distance from destination = 42.1111111111 miles

Current speed increased to 15. miles/hr

Current position is (0, 7.97222222225)

Current distance from destination = 42.0277777778 miles

Current speed increased to 20. miles/hr

Current position is (0, 8.08333333336)

Current distance from destination = 41.9166666666 miles

DECELERATING QUICKLY DUE TO AN UNEXPECTED PEDESTRIAN

Current speed decreased to 0. miles/hr

Current position is (0, 8.08333333336)

Current distance from destination = 41.9166666666 miles

Current speed increased to 5. miles/hr

Current position is (0, 8.11111111114)

Current distance from destination = 41.8888888889 miles

Current speed increased to 10. miles/hr

Current position is (0, 8.1666666667)

Current distance from destination = 41.8333333332 miles

Current speed increased to 15. miles/hr

Current position is (0, 8.25000000003)

Current distance from destination = 41.75 miles

Current speed increased to 20. miles/hr

Current position is (0, 8.36111111114)

Current distance from destination = 41.6388888889 miles

DECELERATING QUICKLY DUE TO AN UNEXPECTED PEDESTRIAN

60

Current speed decreased to 0. miles/hr

Current position is (0, 8.36111111114)

Current distance from destination = 41.6388888889 miles

Current speed increased to 5. miles/hr

Current position is (0, 8.38888888892)

Current distance from destination = 41.6111111111 miles

Current speed increased to 10. miles/hr

Current position is (0, 8.44444444448)

Current distance from destination = 41.5555555555 miles

Current speed increased to 15. miles/hr

Current position is (0, 8.52777777781)

Current distance from destination = 41.4722222222 miles

Current speed increased to 20. miles/hr

Current position is (0, 8.63888888892)

Current distance from destination = 41.361111111 miles

DECELERATING QUICKLY DUE TO AN UNEXPECTED PEDESTRIAN

Current speed decreased to 0. miles/hr

Current position is (0, 8.63888888892)

Current distance from destination = 41.361111111 miles

Current speed increased to 5. miles/hr

Current position is (0, 8.6666666667)

Current distance from destination = 41.3333333333 miles

Current speed increased to 10. miles/hr

Current position is (0, 8.72222222226)

Current distance from destination = 41.2777777778 miles

Current speed increased to 15. miles/hr

Current position is (0, 8.80555555559)

Current distance from destination = 41.1944444444 miles

Current speed increased to 20. miles/hr

Current position is (0, 8.9166666667)

61

Current distance from destination = 41.0833333334 miles

Current speed increased to 25. miles/hr

Current position is (0, 9.05555555559)

Current distance from destination = 40.9444444444 miles

Current speed increased to 30. miles/hr

Current position is (0, 9.22222222226)

Current distance from destination = 40.7777777777 miles

Current speed increased to 35. miles/hr

Current position is (0, 9.4166666667)

Current distance from destination = 40.5833333333 miles

Current speed increased to 40. miles/hr

Current position is (0, 9.63888888892)

Current distance from destination = 40.3611111111 miles

Current speed increased to 45. miles/hr

Current position is (0, 9.88888888892)

Current distance from destination = 40.1111111111 miles

Current position is (0, 10.1388888889)

Current distance from destination = 39.8611111111 miles

Current position is (0, 10.3888888889)

Current distance from destination = 39.6111111112 miles

Current position is (0, 10.6388888889)

Current distance from destination = 39.3611111111 miles

Current position is (0, 10.8888888889)

Current distance from destination = 39.111111111 miles

Current position is (0, 11.1388888889)

Current distance from destination = 38.8611111111 miles

Current position is (0, 11.3888888889)

Current distance from destination = 38.6111111111 miles

62

DECELERATING QUICKLY DUE TO AN UNEXPECTED PEDESTRIAN

Current speed decreased to 25. miles/hr

Current position is (0, 11.5277777778)

Current distance from destination = 38.4722222221 miles

Current speed decreased to 5. miles/hr

Current position is (0, 11.5555555556)

Current distance from destination = 38.4444444444 miles

Current speed decreased to 0 miles/hr

Current position is (0, 11.5555555556)

Current distance from destination = 38.4444444444 miles

Current speed increased to 5. miles/hr

Current position is (0, 11.5833333334)

Current distance from destination = 38.4166666666 miles

Current speed increased to 10. miles/hr

Current position is (0, 11.638888889)

Current distance from destination = 38.361111111 miles

Current speed increased to 15. miles/hr

Current position is (0, 11.7222222223)

Current distance from destination = 38.2777777777 miles

Current speed increased to 20. miles/hr

Current position is (0, 11.8333333334)

Current distance from destination = 38.1666666666 miles

DECELERATING QUICKLY DUE TO AN UNEXPECTED PEDESTRIAN

Current speed decreased to 0. miles/hr

Current position is (0, 11.8333333334)

Current distance from destination = 38.1666666666 miles

Current speed increased to 5. miles/hr

Current position is (0, 11.8611111112)

Current distance from destination = 38.1388888888 miles

63

Current speed increased to 10. miles/hr

Current position is (0, 11.9166666668)

Current distance from destination = 38.0833333332 miles

Current speed increased to 15. miles/hr

Current position is (0, 12.0000000001)

Current distance from destination = 37.9999999999 miles

Current speed increased to 20. miles/hr

Current position is (0, 12.1111111112)

Current distance from destination = 37.8888888888 miles

DECELERATING QUICKLY DUE TO AN UNEXPECTED PEDESTRIAN

Current speed decreased to 0. miles/hr

Current position is (0, 12.1111111112)

Current distance from destination = 37.8888888888 miles

Current speed increased to 5. miles/hr

Current position is (0, 12.138888889)

Current distance from destination = 37.861111111 miles

Current speed increased to 10. miles/hr

Current position is (0, 12.1944444446)

Current distance from destination = 37.8055555554 miles

Current speed increased to 15. miles/hr

Current position is (0, 12.2777777779)

Current distance from destination = 37.7222222221 miles

Current speed increased to 20. miles/hr

Current position is (0, 12.388888889)

Current distance from destination = 37.6111111109 miles

Current speed increased to 25. miles/hr

Current position is (0, 12.5277777779)

Current distance from destination = 37.4722222221 miles

Current speed increased to 30. miles/hr

Current position is (0, 12.6944444446)

64

Current distance from destination = 37.3055555554 miles

Current speed increased to 35. miles/hr

Current position is (0, 12.888888889)

Current distance from destination = 37.111111111 miles

Current speed increased to 40. miles/hr

Current position is (0, 13.1111111112)

Current distance from destination = 36.8888888888 miles

Current speed increased to 45. miles/hr

Current position is (0, 13.3611111112)

Current distance from destination = 36.6388888889 miles

Current position is (0, 13.6111111112)

Current distance from destination = 36.3888888888 miles

Current position is (0, 13.8611111112)

Current distance from destination = 36.1388888888 miles

Current position is (0, 14.1111111112)

Current distance from destination = 35.8888888888 miles

Current position is (0, 14.3611111112)

Current distance from destination = 35.6388888888 miles

Current position is (0, 14.6111111112)

Current distance from destination = 35.3888888887 miles

Current position is (0, 14.8611111112)

Current distance from destination = 35.1388888888 miles

Current position is (0, 15.1111111112)

Current distance from destination = 34.8888888889 miles

Current position is (0, 15.3611111112)

Current distance from destination = 34.6388888888 miles

Current position is (0, 15.6111111112)

Current distance from destination = 34.3888888889 miles

65

Current position is (0, 15.8611111112)

Current distance from destination = 34.1388888888 miles

Current position is (0, 16.1111111112)

Current distance from destination = 33.8888888888 miles

Current position is (0, 16.3611111112)

Current distance from destination = 33.6388888888 miles

Current position is (0, 16.6111111112)

Current distance from destination = 33.3888888888 miles

Current position is (0, 16.8611111112)

Current distance from destination = 33.1388888887 miles

Current position is (0, 17.1111111112)

Current distance from destination = 32.8888888888 miles

Current position is (0, 17.3611111112)

Current distance from destination = 32.6388888889 miles

Current position is (0, 17.6111111112)

Current distance from destination = 32.3888888888 miles

Current position is (0, 17.8611111112)

Current distance from destination = 32.1388888889 miles

Current position is (0, 18.1111111112)

Current distance from destination = 31.8888888888 miles

Current position is (0, 18.3611111112)

Current distance from destination = 31.6388888888 miles

Current position is (0, 18.6111111112)

Current distance from destination = 31.3888888888 miles

Current position is (0, 18.8611111112)

Current distance from destination = 31.1388888888 miles

66

Current position is (0, 19.1111111112)

Current distance from destination = 30.8888888888 miles

Current position is (0, 19.3611111112)

Current distance from destination = 30.6388888888 miles

Current position is (0, 19.6111111112)

Current distance from destination = 30.3888888888 miles

Current position is (0, 19.8611111112)

Current distance from destination = 30.1388888888 miles

Current position is (0, 20.1111111112)

Current distance from destination = 29.8888888888 miles

Current position is (0, 20.3611111112)

Current distance from destination = 29.6388888888 miles

Current position is (0, 20.6111111112)

Current distance from destination = 29.3888888888 miles

Current position is (0, 20.8611111112)

Current distance from destination = 29.1388888888 miles

Current position is (0, 21.1111111112)

Current distance from destination = 28.8888888888 miles

Current position is (0, 21.3611111112)

Current distance from destination = 28.6388888888 miles

Current position is (0, 21.6111111112)

Current distance from destination = 28.3888888888 miles

Current position is (0, 21.8611111112)

Current distance from destination = 28.1388888888 miles

Current position is (0, 22.1111111112)

Current distance from destination = 27.8888888888 miles

Current position is (0, 22.3611111112)

67

Current distance from destination = 27.6388888888 miles

Current position is (0, 22.6111111112)

Current distance from destination = 27.3888888888 miles

Current position is (0, 22.8611111112)

Current distance from destination = 27.1388888888 miles

Current position is (0, 23.1111111112)

Current distance from destination = 26.8888888888 miles

Current position is (0, 23.3611111112)

Current distance from destination = 26.6388888888 miles

Current position is (0, 23.6111111112)

Current distance from destination = 26.3888888888 miles

Current position is (0, 23.8611111112)

Current distance from destination = 26.1388888888 miles

Current position is (0, 24.1111111112)

Current distance from destination = 25.8888888888 miles

Current position is (0, 24.3611111112)

Current distance from destination = 25.6388888888 miles

Current position is (0, 24.6111111112)

Current distance from destination = 25.3888888888 miles

Current position is (0, 24.8611111112)

Current distance from destination = 25.1388888888 miles

Current position is (0, 25.1111111112)

Current distance from destination = 24.8888888888 miles

Current position is (0, 25.3611111112)

Current distance from destination = 24.6388888888 miles

Current position is (0, 25.6111111112)

Current distance from destination = 24.3888888888 miles

68

Current position is (0, 25.8611111112)

Current distance from destination = 24.1388888888 miles

Current position is (0, 26.1111111112)

Current distance from destination = 23.8888888888 miles

Current position is (0, 26.3611111112)

Current distance from destination = 23.6388888888 miles

Current position is (0, 26.6111111112)

Current distance from destination = 23.3888888888 miles

Current position is (0, 26.8611111112)

Current distance from destination = 23.1388888888 miles

Current position is (0, 27.1111111112)

Current distance from destination = 22.8888888888 miles

Current position is (0, 27.3611111112)

Current distance from destination = 22.6388888888 miles

Current position is (0, 27.6111111112)

Current distance from destination = 22.3888888888 miles

Current position is (0, 27.8611111112)

Current distance from destination = 22.1388888888 miles

Current position is (0, 28.1111111112)

Current distance from destination = 21.8888888888 miles

Current position is (0, 28.3611111112)

Current distance from destination = 21.6388888888 miles

Current position is (0, 28.6111111112)

Current distance from destination = 21.3888888888 miles

Current position is (0, 28.8611111112)

Current distance from destination = 21.1388888888 miles

69

Current position is (0, 29.1111111112)

Current distance from destination = 20.8888888888 miles

Current position is (0, 29.3611111112)

Current distance from destination = 20.6388888888 miles

Current position is (0, 29.6111111112)

Current distance from destination = 20.3888888888 miles

Current position is (0, 29.8611111112)

Current distance from destination = 20.1388888888 miles

Current position is (0, 30.1111111112)

Current distance from destination = 19.8888888888 miles

Current position is (0, 30.3611111112)

Current distance from destination = 19.6388888888 miles

Current position is (0, 30.6111111112)

Current distance from destination = 19.3888888888 miles

Current position is (0, 30.8611111112)

Current distance from destination = 19.1388888888 miles

Current position is (0, 31.1111111112)

Current distance from destination = 18.8888888888 miles

Current position is (0, 31.3611111112)

Current distance from destination = 18.6388888888 miles

Current position is (0, 31.6111111112)

Current distance from destination = 18.3888888888 miles

Current position is (0, 31.8611111112)

Current distance from destination = 18.1388888888 miles

Current position is (0, 32.1111111112)

Current distance from destination = 17.8888888888 miles

Current position is (0, 32.3611111112)

70

Current distance from destination = 17.6388888888 miles

Current position is (0, 32.6111111112)

Current distance from destination = 17.3888888888 miles

Current position is (0, 32.8611111112)

Current distance from destination = 17.1388888888 miles

Current position is (0, 33.1111111112)

Current distance from destination = 16.8888888888 miles

Current position is (0, 33.3611111112)

Current distance from destination = 16.6388888888 miles

Current position is (0, 33.6111111112)

Current distance from destination = 16.3888888888 miles

Current position is (0, 33.8611111112)

Current distance from destination = 16.1388888888 miles

Current position is (0, 34.1111111112)

Current distance from destination = 15.8888888888 miles

Current position is (0, 34.3611111112)

Current distance from destination = 15.6388888888 miles

Current position is (0, 34.6111111112)

Current distance from destination = 15.3888888888 miles

Current position is (0, 34.8611111112)

Current distance from destination = 15.1388888888 miles

Current position is (0, 35.1111111112)

Current distance from destination = 14.8888888888 miles

Current position is (0, 35.3611111112)

Current distance from destination = 14.6388888888 miles

Current position is (0, 35.6111111112)

Current distance from destination = 14.3888888888 miles

71

Current position is (0, 35.8611111112)

Current distance from destination = 14.1388888888 miles

Current position is (0, 36.1111111112)

Current distance from destination = 13.8888888888 miles

Current position is (0, 36.3611111112)

Current distance from destination = 13.6388888888 miles

Current position is (0, 36.6111111112)

Current distance from destination = 13.3888888888 miles

Current position is (0, 36.8611111112)

Current distance from destination = 13.1388888888 miles

Current position is (0, 37.1111111112)

Current distance from destination = 12.8888888888 miles

Current position is (0, 37.3611111112)

Current distance from destination = 12.6388888888 miles

Current position is (0, 37.6111111112)

Current distance from destination = 12.3888888888 miles

Current position is (0, 37.8611111112)

Current distance from destination = 12.1388888888 miles

Current position is (0, 38.1111111112)

Current distance from destination = 11.8888888888 miles

Current position is (0, 38.3611111112)

Current distance from destination = 11.6388888888 miles

Current position is (0, 38.6111111112)

Current distance from destination = 11.3888888888 miles

Current position is (0, 38.8611111112)

Current distance from destination = 11.1388888888 miles

72

Current position is (0, 39.1111111112)

Current distance from destination = 10.8888888888 miles

Current position is (0, 39.3611111112)

Current distance from destination = 10.6388888888 miles

Current position is (0, 39.6111111112)

Current distance from destination = 10.3888888888 miles

Current position is (0, 39.8611111112)

Current distance from destination = 10.1388888888 miles

Current position is (0, 40.1111111112)

Current distance from destination = 9.8888888888 miles

Current position is (0, 40.3611111112)

Current distance from destination = 9.6388888888 miles

Current position is (0, 40.6111111112)

Current distance from destination = 9.3888888888 miles

Current position is (0, 40.8611111112)

Current distance from destination = 9.1388888888 miles

Current position is (0, 41.1111111112)

Current distance from destination = 8.8888888888 miles

Current position is (0, 41.3611111112)

Current distance from destination = 8.6388888888 miles

Current position is (0, 41.6111111112)

Current distance from destination = 8.3888888888 miles

Current position is (0, 41.8611111112)

Current distance from destination = 8.1388888888 miles

Current position is (0, 42.1111111112)

Current distance from destination = 7.8888888888 miles

Current position is (0, 42.3611111112)

73

Current distance from destination = 7.6388888888 miles

Current position is (0, 42.6111111112)

Current distance from destination = 7.3888888888 miles

Current position is (0, 42.8611111112)

Current distance from destination = 7.1388888888 miles

Current position is (0, 43.1111111112)

Current distance from destination = 6.8888888888 miles

Current position is (0, 43.3611111112)

Current distance from destination = 6.6388888888 miles

Current position is (0, 43.6111111112)

Current distance from destination = 6.3888888888 miles

Current position is (0, 43.8611111112)

Current distance from destination = 6.1388888888 miles

Current position is (0, 44.1111111112)

Current distance from destination = 5.8888888888 miles

Current position is (0, 44.3611111112)

Current distance from destination = 5.6388888888 miles

Current position is (0, 44.6111111112)

Current distance from destination = 5.3888888888 miles

Current position is (0, 44.8611111112)

Current distance from destination = 5.1388888888 miles

Current position is (0, 45.1111111112)

Current distance from destination = 4.8888888888 miles

Current position is (0, 45.3611111112)

Current distance from destination = 4.6388888888 miles

Current position is (0, 45.6111111112)

Current distance from destination = 4.3888888888 miles

74

Current position is (0, 45.8611111112)

Current distance from destination = 4.1388888888 miles

Current position is (0, 46.1111111112)

Current distance from destination = 3.8888888888 miles

Current position is (0, 46.3611111112)

Current distance from destination = 3.6388888888 miles

Current position is (0, 46.6111111112)

Current distance from destination = 3.3888888888 miles

Current position is (0, 46.8611111112)

Current distance from destination = 3.1388888888 miles

Current position is (0, 47.1111111112)

Current distance from destination = 2.8888888888 miles

Current position is (0, 47.3611111112)

Current distance from destination = 2.6388888888 miles

Current position is (0, 47.6111111112)

Current distance from destination = 2.3888888888 miles

Current position is (0, 47.8611111112)

Current distance from destination = 2.1388888888 miles

Current position is (0, 48.1111111112)

Current distance from destination = 1.8888888888 miles

Current position is (0, 48.3611111112)

Current distance from destination = 1.6388888888 miles

Current position is (0, 48.6111111112)

Current distance from destination = 1.3888888888 miles

Current position is (0, 48.8611111112)

Current distance from destination = 1.1388888888 miles

75

Current position is (0, 49.1111111112)

Current distance from destination = 0.8888888888 miles

Current position is (0, 49.3611111112)

Current distance from destination = 0.6388888888 miles

Current position is (0, 49.6111111112)

Current distance from destination = 0.3888888888 miles

Approaching destination

Current speed decreased to 40. miles/hr

Current position is (0, 49.8333333334)

Current distance from destination = 0.1666666666 miles

Current speed decreased to 35. miles/hr

Current position is (0, 50.0277777778)

Current distance from destination = 0.0277777778 miles

Arrived at destination

9.12 Some Sample Input Test Files

9.12.1 test23.iDrive

/* To test nested for loops and while loops:

declare a global variable, run all combinations of

nested for loops and while loops, and print the results */

object a(int x, int xx);

function main()

{

for (a.x=0 ; a.x < 5 ; a.x=a.x + 1) {

a.xx = 0;

while (a.xx < 5) {

print(a.x ++ "-" ++ a.xx);

a.xx = a.xx + 1;

}

76

print("");

}

for (a.x=0 ; a.x < 5 ; a.x=a.x + 1) {

for (a.xx=0 ; a.xx < 5 ; a.xx=a.xx + 1) {

print(a.x ++ "-" ++ a.xx);

}

print("");

}

a.x = 0;

while (a.x < 5) {

for (a.xx=0 ; a.xx < 5 ; a.xx=a.xx + 1) {

print(a.x ++ "-" ++ a.xx);

}

print("");

a.x=a.x + 1;

}

a.x = 0;

while (a.x < 5) {

a.xx = 0;

while (a.xx < 5) {

print(a.x ++ "-" ++ a.xx);

a.xx = a.xx + 1;

}

print("");

a.x=a.x + 1;

}

print(a.x);

print(a.xx);

}

9.12.2 test27.iDrive

/* To test static scoping of variables:

declare a global variable and a local variable with the same name,

update the local variable, and print both the variables */

77

object a(int x=1, string y="John", boolean z=true, decimal d=1.0);

function printObject(obj)

{

print(obj.x);

print(obj.y);

print(obj.z);

print(obj.d);

}

function printGlobalA()

{

printObject(a);

}

function main()

{

object a(int x, string y, boolean z, decimal d);

a.x = 100;

a.y = "John Smith";

a.z = false;

a.d = 2.5;

printObject(a);

printGlobalA();

}

9.12.3 test29.iDrive

/* To further test scope of a global variable:

declare a global variable, invoke another funtion mutateGlobalObject(),

update the global variable in that function, and print

the variable just before the funtion returns to show the

altered state of the variable and just after the function returns

to again show the altered state of the variable */

object a(int x=1, string y="John", boolean z=true, decimal d=1.0);

78

function printObject(obj)

{

print(obj.x);

print(obj.y);

print(obj.z);

print(obj.d);

}

function mutateGlobalObject()

{

printObject(a);

a.x = 100;

a.y = "Random";

a.z = false;

a.d = sqrt(a.x);

printObject(a);

}

function main()

{

printObject(a);

mutateGlobalObject();

printObject(a);

}

�

79

	Introduction
	About the iDrive Programming Language
	Language Tutorial
	A First Example
	Compiling iDrive programs
	More Examples

	Language Reference Manual
	Lexical Conventions
	Character Set
	Identifiers
	Keywords
	Constants
	Operators
	Punctuators
	Comments
	White Space
	Semicolons and Line Breaks

	Data Types
	Simple Types
	Complex Types

	Statements
	Compound Statements
	Expression Statements
	Control Statements

	Functions
	User-defined Functions
	Built-in Functions

	Scope

	Project Plan
	Responsibilities
	Methodology
	Software Development Environment
	Programming Style
	Project Timeline

	Architectural Design
	Architectural Block Diagram
	Interfaces and Flow
	Enhancements over MicroC

	Test Plan
	Test Cases
	Automation
	Testing Results

	Lessons Learned
	Appendix
	scanner.mll
	parser.mly
	ast.mli
	interpret.ml
	iDrive.ml
	Make.bat
	Cleanup.bat
	RunTests.bat
	CleanupTests.bat
	Representative Program
	Representative Program Output
	Some Sample Input Test Files
	test23.iDrive
	test27.iDrive
	test29.iDrive

