
iDrive Programming Language

Language Reference Manual
(for COMS W4115)

Parag Jain
pj2171@columbia.edu

1 Introduction

iDrive is a high level programming language that provides basic constructs to develop algo-
rithms to simulate an environment where cars drive without a need for human intervention.
Currently, no such language exists and given the complexity of the paradigm, iDrive is
extremely useful since it is specialized to accomplish this challenging task. The primary
focus of iDrive is the abstraction and reduction of non-essential or monotonous tasks so
that the researchers no longer need to spend time specifying the characteristics of driving
and just need to focus on creating intelligent algorithms for developing fully autonomous
cars. iDrive provides the researcher with a rich set of tools that may be used intuitively
to implement algorithms for driving cars. Every effort has been made to ensure that the
language is intuitive and easy to read and understand.

Using iDrive, a program first creates a simple car object and subsequently creates other
simple objects including cars, traffic signals, stop signs, and pedestrians, and assigns basic
properties which characterize them. In the real world, the program would be made aware of
the presence of such objects using advanced computer software linked to a range of sensors
such as cameras, radar, and GPS. To simulate such input, the program creates these objects
randomly and incrementally. As the car heads toward its destination, the program determines
the flow of traffic and outputs the outcome of interactions between the objects.

2 Lexical Conventions

iDrive uses syntax based on that of C and Java because the idea is to create a development
environment that is relatively familiar to those who already know C and Java, hence reducing

1

the learning curve for transitioning to iDrive.

iDrive uses a standard grammar and character set. Characters in the source code are
grouped into tokens, which can be identifiers, keywords, operators, punctuators, or string
literals. The compiler forms the longest possible token from a given string of characters;
tokens end when white space is encountered, or when it would not be possible for the next
character to be part of the token.

2.1 Character Set

iDrive accepts standard ASCII characters.

2.2 Identifiers

An identifier is a sequence of letters, digits, and the underscore character and represents the
names of user defined variables and functions. All identifiers start with a letter. Identifiers
are case sensitive and keywords can not be used as identifiers.

2.3 Keywords

Keywords are identifiers that are reserved words in iDrive. They have specific function and
can not be used as identifiers. Keywords are case sensitive and valid keywords are:

object vehicle pedestrian trafficsignal stopsign

boolean int decimal string

true false

while

for

if else

function

print

random

main

2.4 Constants

A constant is used to set value for an identifier that forms an attribute for an object.

2

2.4.1 Integer constants

Integer constants are represented with whole numbers in decimal format. An integer constant
constitutes only of digits; decimal point and exponent are not allowed. A unary - operator
is allowed. For example, 4 or -342.

2.4.2 Floating point constants

Floating point constants are represented with a whole part, a decimal point and a fractional
part. The whole part and the fractional part are made up only of digits. A unary - operator
is allowed. For example, 8.1 or -0.42322.

2.4.3 String constants

String constants are made up of a sequence of zero or more characters that are enclosed in
quotes. For example, “John Smith” or “2”.

2.5 Operators

Operators are tokens that specify an operation on at least one operand. They are used in
expressions, assignments and object dereferencing.

< <= > >= == != Relational operators
! && || Logical operators
+ - * / ^ Mathematical operators
- Unary operator
= Assignment operator
. To dereference attribute of an object

The table below shows the precedence the iDrive compiler uses to evaluate operators. Op-
erators with the highest precedence appear at the top of the table; those with the lowest
precedence appear at the bottom. Operators of equal precedence appear in the same row.

3

Category Operator Associativity
Dot . Left to right

Unary - Right to left
Mathematical * / Left to right
Mathematical + - Left to right

Relational < <= > >= Left to right
Relational == != Left to right

Logical ! Left to right
Logical && Left to right
Logical || Left to right

Assignment = Right to left

Associativity relates to precedence, and resolves any ambiguity over the grouping of operators
with the same precedence. Most operators associate left-to-right, so the leftmost expressions
are evaluated first. The assignment operator and the unary operators associate right-to-left.

2.6 Punctuators

‘‘ ’’ To enclose string constants
{ } To enclose a group of statements in a procedure or function
() To enclose a group of arguments for a function
; To separate a statement from another
, To separate arguments within a function

2.7 Comments

Inline comments begin with the // character sequence and end with a line feed. Alternatively,
comments may begin with the opening character sequence /* and close with the sequence
*/. Comments cannot be nested.

2.8 White Space

White space characters which include spaces, tabs, and line feed characters may used to
separate keywords, operators, and code tokens in the input but are discarded during parsing.

2.9 Semicolons and Line Breaks

Semicolons serve as a statement separator, and line breaks serve as a terminator. Multiple
statements may be put on a single line of source code using semicolons in between each
statement.

4

3 Data Types

3.1 Simple Types

These can be defined on their own, or they can serve as attributes within a complex type.

boolean Used to hold true/false data
int Used to hold integer data
decimal Used to hold decimal data
string Used to hold string data

3.2 Complex Types

3.2.1 object

An object is used to define a simple object. An object is characterized by one or more
user defined fields or attributes holding some data. An object has no predefined attributes.
Attributes are all custom and could be added at initialization as well as later in the program.
For example,

object identifier (int identifier1 = 1, string identifier2 = ‘‘John Smith’’,

int identifier3 = 5);

or

object identifier (int identifier1, string identifier2, int identifier3);

identifier.identifier1 = 1;

identifier.identifier2 = ‘‘John Smith’’;

identifier.identifier3 = 5;

3.2.2 vehicle

A vehicle is used to define a car object. Similar to object, a vehicle is characterized by
one or more user defined fields or attributes holding some data. At this point vehicle has
no predefined attributes but such predefined attributes may be introduced in a later version
of iDrive.

3.2.3 pedestrian

A pedestrian is used to define a car object. Similar to object, a pedestrian is charac-
terized by one or more user defined fields or attributes holding some data. At this point

5

pedestrian has no predefined attributes but such predefined attributes may be introduced
in a later version of iDrive.

3.2.4 trafficsignal

A trafficsignal is used to define a car object. Similar to object, a trafficsignal is
characterized by one or more user defined fields or attributes holding some data. At this
point trafficsignal has no predefined attributes but such predefined attributes may be
introduced in a later version of iDrive.

3.2.5 stopsign

A stopsign is used to define a car object. Similar to object, a stopsign is characterized by
one or more user defined fields or attributes holding some data. At this point stopsign has
no predefined attributes but such predefined attributes may be introduced in a later version
of iDrive.

4 Statements

Statements are executed in the sequence in which they appear in the code.

4.1 Compound Statements

A compound statement, or block, allows a sequence of statements to be treated as a single
statement. A compound statement begins with a {, (optionally) contains statements, and
ends with a }. For example,

{
statement1

statement2

...

}

4.2 Expression Statements

An expression statement can be a combination of operators, identifiers, and literals. Upon
evaluation, an expression returns a value. The value type is dependant on the expressions
being combined. For example,

identifier == ‘‘John Smith’’

6

or

identifier1 > identifier2 .

4.3 Control Statements

To control a program’s flow the following control statements are supported much like in C
and Java:

4.3.1 while loop

The while loop has the following syntax:

while (expression)

{
statement1

statement2

...

}

In a while loop, the statements inside the while loop are repeatedly executed as long as
expression is true.

4.3.2 for loop

The for loop has the following syntax:

for (expression1 ; expression2 ; expression3)

{
statement1

statement2

...

}

In a for loop, first expression1 is executed. Then the statements inside the for loop are
repeatedly executed followed by expression3 as long as expression2 is true.

7

4.3.3 if else condition

The if else statement has the following syntax:

if (expression)

{
statement1

statement2

...

}
else

{
statement3

statement4

...

}

The statements following the control expression are executed if the value of the control
expression is true (nonzero). The statements in the else clause are executed if the control
expression is false (zero).

5 Functions

5.1 User-defined Functions

The function keyword is used to define user-defined functions. A function in iDrive does
not have a return type and all parameters passed to the function are “passed by reference”
and the outcome of the function is reflected directly on the input. Functions can access global
variables, parameters, and locally declared variables. function has the following syntax:

function identifier (parameter1, parameter2, ...)

{
statement1

statement2

...

}

5.2 Built-in Functions

iDrive provides one built-in function which may not be redefined.

8

5.2.1 print

The print function is used to output text to the screen. This function takes a combinations
of string constants (elcosed in “”) and identifiers (holding some data) as input, resolves the
identifiers to text, and outputs the resulting text to the screen. The print statement has
the following syntax:

print(‘‘My name is ’’ identifier ‘‘. What is your name?’’)

5.2.2 random

The random function is used to randomly pick an integer between 0 (inclusive) and bound

(exclusive). This function takes an integer value for bound as input and outputs a randomly
chosen integer. The random statement has the following syntax:

random(bound)

6 Scope

There are two types of scope – local and global. Identifiers declared within a function are
local only to that function and may not be used outside the funtion. Global identifiers are
declared outside any functions and may be used anywhere in the program.

7 Representative Program

Here is a representative program that demonstrates a simple iDrive program, which first
creates a simple vehicle object and subsequently creates other objects. As the car heads
from its source position to its destination position, the program determines the flow of traffic
and outputs the outcome of interactions between these objects:

/* This is the vehicle object that needs to be transported from

source position to destination position */

vehicle myCar(decimal currentXPosition=0, decimal currentYPosition=0,

decimal currentSpeed=0, string heading=’’North’’,

decimal destXPosition=0, decimal destYPosition=50,

decimal distanceToDest, boolean isClearToGo = true);

9

/* This is an object that stores global variables */

object global(int rand, decimal acceleration = 5, decimal deceleration = 5);

/* The main() function must always be present.

It is the entry point for a iDrive program much like C and Java.*/

function main()

{
distanceToDestination(myCar);

while (myCar.distanceToDest > 0.5) {

/* myCar.isClearToGo will take into account pedestrians, traffic signals,

stop signs, and other vehicles on the roadway */

if (myCar.isClearToGo) {

/* To simulate such input in absence of sensors such as cameras,

radar, and GPS, the program creates these objects randomly and

incrementally. */

if (random(4) == 0) {
myCar.isClearToGo = false;

global.rand = random(4);

if (global.rand == 0) {
vehicle newCar();

global.deceleration = 20;

print(‘‘Decelerating quickly due to an

unexpected approaching car’’);

}
if (global.rand == 1) {

pedestrian newPedestrian();

global.deceleration = 20;

print(‘‘Decelerating quickly due to an unexpected

pedestrian’’);

}
if (global.rand == 2) {

10

trafficsignal newTrafficSignal();

global.deceleration = 5;

print(‘‘Decelerating due to an traffic signal up

ahead’’);

}
if (global.rand == 3) {

stopsign newStopSign();

global.deceleration = 5;

print(‘‘Decelerating due to a stop sign up ahead’’);

}
}

}

if (myCar.isClearToGo) {
if (myCar.currentSpeed < 45) {

accelerate(myCar, global.acceleration);

}

updateCurrentPosition(myCar);

distanceToDestination(myCar);

}
else {

if (myCar.currentSpeed > 0) {
decelerate(myCar, global.deceleration);

}
else {

global.deceleration = 5;

myCar.isClearToGo = true;

accelerate(myCar, global.acceleration);

}

updateCurrentPosition(myCar);

distanceToDestination(myCar);

}
}

if (myCar.distanceToDest <= 0.5 && myCar.currentSpeed = 0) {
print(‘‘Please walk this distance’’);

}
else {

11

print(‘‘Approaching destination’’);

while (myCar.currentSpeed > 0) {
decelerate(myCar, global.deceleration);

updateCurrentPosition(myCar);

distanceToDestination(myCar);

}
}

}

/* Below are all the user defined functions */

/* accelerate increases the car speed by a specified amount */

function accelerate(v, howFast)

{
v.currentSpeed = v.currentSpeed + howFast;

print(‘‘Current speed increased to ’’ ++ v.currentSpeed);

}

/* decelerate decreases the car speed by a specified amount */

function decelerate(v, howFast)

{
v.currentSpeed = v.currentSpeed - howFast;

print(‘‘Current speed decreased to ’’ ++ v.currentSpeed);

}

/* updateCurrentPosition updates the current position of the car taking current

speed into account */

function updateCurrentPosition(v)

{
if (v.heading == "North") {

currentXPosition = 0;

currentYPosition = currentYPosition + (v.currentSpeed / 3600) * 10;

}
if (v.heading == "East") {

currentXPosition = currentXPosition + (v.currentSpeed / 3600) * 10;

currentYPosition = 0;

}

12

if (v.heading == "West") {
currentXPosition = currentXPosition - (v.currentSpeed / 3600) * 10;

currentYPosition = 0;

}
if (v.heading == "South") {

currentXPosition = 0;

currentYPosition = currentYPosition - (v.currentSpeed / 3600) * 10;

}

print(‘‘Current position is (’’ ++ v.currentXPosition ++ ‘‘, ’’ ++

currentYPosition ++ ‘‘)’’);

}

/* distanceToDestination updates the distance left to the destination position

*/

function distanceToDestination(v)

{
v.distanceToDest = ((v.destXPosition - v.currentXPosition) ^ 2 +

(v.destYPosition - v.currentYPosition) ^ 2) ^ 0.5;

print(‘‘Current distance from destination = ’’ ++ v.distanceToDest);

}

�

13

