

Strlang

String Manipulation Language

Dara Hazeghi
22 December, 2011

COMS 4115

Strlang Project Report 2

Table of Contents

1. Introduction to strlang 3
1.1 Motivation 3
1.2 Overview 3
2. Tutorial 4
2.1 Basics 4
2.2 Example 6
2.3 Other Language Features 7
2.4 Invoking the Compiler 8
2.5 Installation 8
3. Reference Manual 9
3.1 Lexical Conventions 9
3.2 Types 9
3.3 Expressions 10
3.4 Statements 15
3.5 Functions 16
3.6 Program Structure 17
3.7 Built-in Functions 17
3.8 Syntax Summary 18
4. Project Plan 20
4.1 Team Responsibilities 20
4.2 Style Guide 20
4.3 Project Timeline 20
4.4 Development Environment 20
4.5 Project Development Log 21
5. Architectural Design 22
5.1 Scanner 22
5.2 Parser 22
5.3 Symbol Table 22
5.4 Static Semantic Checker 23
5.5 Simplification 23
5.6 Output 24
5.7 Dependencies 24
6. Testing 26
6.1 The Testsuite 26
6.2 Example: Fibonacci 27
6.3 Example: stringfun 28
7. Lessons Learned 32
8. Appendix 33
Ast.ml 33
Check.ml 36
Output.ml 41
Parser.mly 44
Scanner.mll 47
Simple.ml 48
Strlang.ml 51
Symtab.ml 53
Strlib.h 55

Strlang Project Report 3

Chapter 1

Introduction to strlang

strlang is a simple imperative programming language, designed specifically to make
manipulating text strings easy. The language features a minimalistic syntax and includes
support for a variety of string-oriented operations including matching and substituting
regular expressions. While taking syntactic cues from Perl and other more traditional text
processing languages, strlang is a compiled language and offers native performance and
full static semantic checking.

1.1 Motivation

Textual data is omnipresent. A vast number of programming tasks boil down to
processing this data in some fashion, from simple searches to complex transformations
across formats. Traditional compiled programming languages like C and Java don't make
this particularly easy, either requiring special libraries or special extensions to accomplish
such tasks. As a result, much text processing is done with scripting languages like Perl
and Python, which while easier to program, tend to be much slower and not to provide
the extensive error-checking of compiled languages.

strlang is intended to combine the best of both these approaches. Its sparse syntax and
built-in string operations will allow the programs to be written quickly and easily. As a
compiled language though, it features all of the advantages of static type-checking and
outputs C++ code as which can readily be built and optimized by standard tools.

1.2 Overview

strlang is an imperative language with a C-like structure. It incorporates variables,
expressions, blocks, conditionals, loops and functions. The native data types for strlang
are strings and numbers. String operations include concatenation, substring, matching
and replacing. Matching and replacing allows the use of powerful Perl-style regular
expressions. Numbers allow for standard arithmetic operations. Additionally, the map
data type provides a container to hold key-value pairs of basic data types (strings or
numbers).

strlang is a strongly typed language. The compiler provides type-checking and other
error-detection, and performs lowering of expressions and blocks. It outputs a particular
subset of C++ code that is similar to three-address code.

Possible uses for strlang might include performing mass edits on text documents,
compiling statistics on word frequencies, reformatting text, translating between different
document and format types or extracting specific columns or entries from large files.

Strlang Project Report 4

Chapter 2

Tutorial

The strlang language features a C-like structure wrapped in a minimalistic syntax. Its
focus is on making manipulation of text strings easy and efficient.

2.1 Basics

strlang has three types of variables: strings ($), numbers (#) and maps (%[k;v]). Strings
are used to store text, number for integer values, and maps to hold key-value pairs. Keys
and values in a map may be strings or numbers.

Comments

Comments are notes by the programmer in the code. They are ignored by the compiler.
Comments begin with // and run through the end of the line. For readability, comments
will be shown in red, code in green.

... // this is a comment and will be ignored

Declarations

Variables must be declared before they are used. Declarations specify the variable's type.

$ str1; // declaring a string called 'str'
num1; // declaring a number called 'num'
%[$;#] city_temps; // declaring a map with string keys and number values

Assignment

The most common operation on variables is to assign them the value of some expression
using the assignment operator (<-). The value of the expression on the right side is stored
in the variable on the left side. The variable and expression must have the same type (i.e.
both string or number or...)

str2 <- str1; // value of the variable str1 stored in str2
num2 <- num1; // value of num1 stored in num2
num2 <- str1; // ERROR: this won't work (different variable types)

Literals

Strings and numbers that are known may be used directly in place of variables.

num1 <- 0; // num1 assigned the value 0
str1 <- "hello"; // str1 assigned the value "hello"

Strlang Project Report 5

Operators

Variables and constants can be transformed using unary and binary operators. Each
operator has rules regarding the types of its inputs and outputs. Here are some of the
basic operators:

num1 <- num1 + 1 * 3 - 7 / 5; // standard arithmetic operations
str1 <- str1 + " world"; // concatenating two strings
str1 <- "hello world" - 5; // removing the last 5 characters
str1 <- "hello" / "l"; // search one string for the other
num1 <- city_temps[str1]; // get value associated with key str1
city_temps["Ojai"] <- 44; // associate value 44 with key 'Ojai'

Expressions

An expression is simply some operation that can be executed and evaluated. Literals,
variable names and binary and unary operations are expressions, among others.

3*7 // arithmetic expression
"hello " + str1 // string expression
num1 // arithmetic expression

Functions

Functions are the logical programming unit for strlang. Each function is a semi-
autonomous chunk of code which receives certain input at the beginning from whomever
invokes it, and when it finishes, it may choose to send back certain output.

The function header defines the name the function is invoked by, as well as the types and
numbers of the inputs to the function, and how they will referred to inside the function.
The header also defines the type of value the function will output. The function's body
contains the actual expressions and statements executed when the function is invoked.

Syntax

name(type input1; type input2; ...) -> output_type // header
{
 // body
}

Functions that do not take input from their caller, or do not return output use ^ in place of
those parts of the header.

empty_func(^) -> ^ // no input, no output
...
no_input_func(^) -> # // no input, number output
...

To get values out of a function, a return statement is used. The statement consists of the
return operator (->) followed by an expression (or no expression if the function is not
defined as outputting a value).

Strlang Project Report 6

add(#a; #b) -> # // add takes in two numbers, outputs a number
{
 -> a + b; // output sum of num1 and num2 to the caller
}

Invoking Functions

Defining functions isn't much use if they can't invoked. Invoking a function requires
specifying the values or variables that will be given as input. These values are mapped to
the input variables defined in the function header in the order given. For functions that
output a value, the result can be assigned using the standard assignment operator.

num1 <- add(num1; num2); // function 'add' receives num1 and num2
 // as input and its output is saves in num
 // in this case, 'a' gets num1, 'b' gets num2
empty_func(); // a function with no inputs

Every program must define a function named 'main' which takes no inputs and outputs a
number. This function is where program execution begins.

Built-in functions

A few functions are built in to the language to make input/output and other lower-level
processes easier. The most important are:

read(^) -> $ // read in a line of text (by default from
 // the keyboard) and return it as a string.
write($msg) -> ^ // output the string 'msg' (by default to the screen)

2.2 Example

Hello World code

main(^) -> # // function header
{ // mark beginning of function body
 $ name; // variable declaration

 write("Enter your name: "); // call to function, with parameter
 name <- read(); // call to function, assigning result to 'name'

 write("Hello " + name + "!\n"); // call to another function
 // expression is evaluated before function is called

 -> 0; // leaving the function, giving back the value '0'
} // end of function body

Running the program

Strlang Project Report 7

The compiler is invoked using the strlang executable. The compiler expects the name of
the source file and the name to save the executable output as. Saving the above file to
hello.str, the process is:

$./strlang
usage:
./strlang
 -a file.str (dump AST of source)
 -c file.str [file.cpp] (compile to C++)
 -e file.str file.exe (compile to executable)
 -h (display this message)
 -v (display version number)

$./strlang -e hello.str hello
$./hello
Enter your name: Dara H
Hello Dara H!
$

2.3 Other language features

Conditionals

strlang includes the standard if-else construct. The test expression, which must be of type
number, is evaluated first. If the result is non-zero, the block directly after the expression
is executed. If not, the block associated with the else-clause is executed. The else clause
is optional.

[num1 < 0] // test clause: num1 < 0 is test expr
{ write("num1 is negative"); } // if num1 < 0, this executes
![] // otherwise (else)...
{ write("num1 is nonnegative"); } // this block executes

Loops

strlang's loops behave like while loops in C. The expression in the loop header is
evaluated. If the result is non-zero, the loop block is executed. If not, control jumps to
the first statement after the loop block. When the last statement of the loop block
executes, the program returns to the loop header.

<num1> // loop header: num1 (!= 0) is test expr
{
 write(to_string(num1) + // print message...
 "bottles of beer on the wall.\n");
 num1 <- num1 - 1; // decrement loop counter
} // end of loop

Operators

strlang has many operators for manipulating strings, and several for manipulating maps.
See the Language Reference Manual for further details.

Strlang Project Report 8

2.4 Invoking the Compiler

The strlang has 3 modes: one for generating code, one for generating an executable and
one for displaying a program's internal representation.

In compilation mode, the compiler will either display or save to a file the C++ code it has
generated for the given program.

 $./strlang -c hello.str hello.cpp

In executable mode, the compiler will first generate C++ code and then invoke the C++
compiler to build an executable that can be run directly.

 $./strlang -e hello.str hello

In display mode, the compiler will dump to the screen the abstract syntax tree
representation of the program after parsing it.

 $./strlang -a hello.str

2.5 Installation

strlang assumes a UNIX-like environment. It requires make, bash, diff and several other
standard UNIX utilities to build and execute. It also requires a C++ compiler, including
the C++ standard library (STL).

1). Obtain and install the ocaml 3.1 distribution, hosted at http://caml.inria.fr/. The ocaml
binaries must be added to the $PATH environment variable.

2). Obtain and install the pcre regular expression library, located at http://www.pcre.org/.
If building from source, make sure to enable the C++ wrapper: (./configure --enable-cpp).
The libraries and headers need to be installed in directories in the standard search path
(/usr/local/include and /usr/local/lib are usually fine).

3). Obtain and decompress the strlang source distribution.

4). Adjust strlang.ml's cpp_compiler variable if you are using a C++ compiler other than
g++. If PCRE is not installed in the default search path, you may need to change the
pcre_* variables as well.

5). From the top-level of the source distribution, type 'make'.

Strlang Project Report 9

Chapter 3

Language Reference Manual

strlang is a simple imperative programming language, designed specifically to make
manipulating text strings easy. The language features a minimalistic syntax and includes
support for a variety of string-oriented operations including matching and substituting
regular expressions. While taking syntactic cues from Perl and other more traditional text
processing languages, strlang is a compiled language and offers native performance and
full static semantic checking.

3.1 Lexical conventions

strlang has five types of tokens: names, number constants, string constants, operators, and
punctuation. The language does not have any keywords.

Names are any sequence of one or more alphabetic (upper and lower-case), numeric or _
characters. The first character must be alphabetic. Names are case sensitive. A small
number of names are reserved for use as built-in functions and may not be used for other
purposes: open, read, end_input, write, to_num, to_string and exit.

A number constant is any sequence of one or more integer characters. As a practical
matter, integer constants are limited to 2^31.

A string constant is a sequence of characters surrounded by double quotes. C-style
escape characters are used.

Operators and punctuation include: () { } [] + - * / % | & < > <= >= == != ! ^ ~
@@ @% <- -> $ # % and ;.

Whitespace, meaning spaces, tabs, carriage-returns and newlines, is ignored.

Comments are begun with the characters // and run to the end of the line. Comments are
ignored.

3.2 Types

strlang has two fundamental types of variables: strings and numbers. Strings contain text,
whereas numbers contain integer quantities. In addition to the basic types, the language
includes the map type for associating key-value pairs. strlang is a strongly typed
language, and all conversions between different types must be made explicitly.

Strings $

Text strings are the bread and butter of strlang. Strings are sequences of ASCII character
values. Regular expressions are no different than other strings, and are interpreted only

Strlang Project Report 10

in the context of searching and replacement. They use the extended Perl syntax. String
operators include concatenation, substring creation, searching, matching and replacing.

Numbers #

Number variables are included to allow for integer and boolean arithmetic. Numbers are
signed 32-bit integer quantities. They support the five standard integer arithmetic
operators, as well as comparison, and boolean connectors. In a boolean context, the value
zero is treated as false, and all other values are treated as true.

Maps %[t1 ; t2]

Maps are the only aggregate type in strlang. Maps are sets of key-value pairs. Only a
single value may be associated with each key. When a map variable is defined, the types
of its keys and values must also be defined. Keys and values may be strings or numbers,
but must be homogeneous. Accordingly, there are four types of maps: number-to-
number, number-to-string, string-to-number and string-to-string.

Map operations include insertion of a key-value pair, lookup of a value by key, deletion
of a key-value pair by key and two special operators used to extract all the values or keys
in a map to be used as values in a new map with number keys. Note that maps with
differing key or value types are considered to be of different types.

None ^

Certain expressions have no value associated with them. Their type is consequently
considered to be 'none'. Variables of this type cannot be explicitly created.

Type Name Notes

$ String Text strings.
Number Signed integer quantities.

%[k;v] Map (k-to-v) Set of key value pairs. k and v can be either $ or #. The
map has keys of type k and values of type v.

^ None Used to indicate functions with no parameters, or no return
value.

3.3 Expressions

Operator Precedence and Associativity

Precedence and associativity of the various operators in strlang is given below, ordered
from lowest to highest precedence.

Operator Associativity Notes

<- Right to Left Assignment. Requires identical type operands (no implicit

Strlang Project Report 11

conversion).
| Left to Right Logical or |. No short-circuit evaluation.
& Left to Right Logical and &. No short-circuit evaluation.

== != Left to Right Structural equality == and inequality !=.
< > <=

>=
Left to Right Numeric comparison for numbers, lexicographic

comparison for strings.
+ - Left to Right Addition + and subtraction - for numbers, concatenation +

and substring - for strings, deletion - for maps.
* / % Left to Right Multiplication *, division / and modulus % for numbers,

match / and index % for strings.
~~ Left to Right Replacement for strings (ternary operator).

- ! ^ Left to Right Arithmetic - and logical negation ! for numbers, length ^
for strings and maps.

[] Left to Right Accessor for maps.
@% @@ Right to Left Keys @% or values @@ for maps.

3.3.1 String Expressions

String Constants "[^\"]*"

Returns the string containing the text between the double-quote symbols.

 a <- "str const"; // string variable 'a' now contains 'str const'

Concatenation $ '+' $

Returns the concatenation of the two string operands.

 a <- "hello " + "world"; // 'a' now contains 'hello world'

Substring $ '-' #

Returns a substring of the first operand. If the second operand is non-negative, these are
the characters of the first operand starting at position n (n being the second operand).
Otherwise, these are the characters of the first operand except for the last |n|.

 a <- "hello world" - 6; // 'a' now contains 'world'
 a <- "hello world" - -6; // 'a' now contains 'hello'

Match $ '/' $

Return the first substring in the first operand that matches the second operand. If there is
no match, an empty string is returned. The second operand will be interpreted as a
regular expression, so special symbols will need to be escaped if they are to be
interpreted as literals.

Strlang Project Report 12

 a <- "hello world." / "world"; // 'a' now contains 'world'
 a <- "hello world." / "h[e-l]*o"; // 'a' now contains 'hello'
 a <- "hello world." / "."; // 'a' now contains 'h'
 a <- "hello world." / "\\."; // 'a' now contains '.'

Index $ '%' $

Return the position in the first operand of the first match for the second operand. If there
is no match, the value -1 is returned. As with match, the second operand will be
interpreted as a regular expression.

 i <- "hello world" % "world"; // 'i' now contains '6'
 i <- "hello world" % "h[e-l]*o"; // 'i' now contains '0'
 i <- "hello world" % "world."; // 'i' now contains '-1'

Replace $ '~' $ '~' $

Return a string consisting of the first operand, with all occurrences of the second operand
replaced by the third operand. The second operand will be interpreted as a regular
expression.

 a <- "hello world" ~ "[eo]" ~ "x"; // 'a' now contains 'hxllx wxrld'
 a <- "hello world" ~ "world" ~ ""; // 'a' now contains 'hello '

Length '^' $

Return the length of the operand - the number of ASCII characters in the string.

 i <- ^ "hello world"; // 'i' now contains '11'

Comparison $ '<' $ or $ '>' $ or $ '<=' $ or $ '>' $

Return 1 if the first operand is lexicographically less than, greater than, less than/equal or
greater than/equal to the second operand. Otherwise return 0.

 i <- "hello" < "helloo"; // 'i' now contains '1'
 i <- "hello" > "helloo"; // 'i' now contains '0'
 i <- "hello" >= "hello"; // 'i' now contains '1'

3.3.2 Number Expressions

Number Constants [0-9]+

Returns a number containing the integer value in the expression.

 i <- 7; // 'i' now contains '7'

Addition # '+' #

Strlang Project Report 13

Returns the sum of the two operands.

 i <- 7 + 4; // 'i' now contains '10'

Subtraction # '-' #

Returns the difference of the two numbers.

 i <- 7 - 3; // 'i' now contains '4'

Multiplication # '*' #

Returns the product of the two numbers.

 i <- 7 * 3; // 'i' now contains '21'

Division # '/' #

Returns the whole-number quotient of the two numbers. If the value of the second
operand is 0, a runtime error will occur.

 i <- 7 / 3; // 'i' now contains '2'
 i <- 7 / 0; // runtime error

Modulus # '%' #

Returns the remainder of the two numbers. If the value of the second operand is 0, a
runtime error will occur.

 i <- 7 % 3; // 'i' now contains '1'
 i <- 7 % 0; // runtime error

Boolean Connectors # '|' # or # '&' #

Returns the logical disjunction or conjunction of the two operands. Evaluation is not
short-circuited, meaning both operands are always evaluated.

 i <- 0 | 1; // 'i' now contains '1'
 i <- 1 & 0; // 'i' now contains '0'
 i <- 0 & (0 / 0); // runtime error, even though 0 is first operand

Comparison # '<' # or # '>' # or # '<=' # or # '>=' #

3.3.3 Map Expressions

Accessor % '[' $ ']' or % '[' # ']'

Strlang Project Report 14

Return the value for the key given as the second operand, in the map given as the first
operand. The type of the second operand must match the type of the map's keys. If the
key is not found, zero or the empty string are returned, depending upon whether the map's
values are numbers or strings.

 s <- ms["hi"]; // 's' now contains the value associated with 'hi' in 'ms'
 i <- mn[3]; // 'i' now contains the value associated with '3' in 'mn'

Deletion % '-' $ or % '-' #

Delete the key-value pair associated with the key given as the second operand and the
map given as the first operand. Return that value.

 s <- ms - "hi";
 // 's' has same value as above example, but 'ms' no longer contains
 // the given pair

Emptying % '<-' '0'

Empty the map given as operand of all key-value pairs, and return the same empty map.

 empty <- ms <- 0; // 'ms' and 'empty' are now both maps with no contents

Length '^' %

Return the number of key-value pairs in the map.

 i <- ^m; // 'i' contains the number of keys in m

Keys '@%' %

Return a new map containing the keys of the map given as the operand. The new map's
values are the keys of the old map. The new map's keys are numbers, zero through the
size of the map.

 keys <- @% m; // 'keys' contains the keys of 'm' as its values

Values '@@' %

Return a new map containing the values of the map given as the operand. The new map's
values are the values of the old map. The new map's keys are numbers, zero through the
size of the map.

 vals <- %% m; // 'vals' contains the values of 'm' as its values

3.3.4 General Expressions

Lvalues name

Strlang Project Report 15

Lvalues are simply variables. They can both be read from and assigned to. They return
the value stored in the given variable. As there are no implicit type conversions, the type
of the return value is simply the same as the type of the variable.

Equality/Inequality expr '==' expr or expr '!=' expr

Return the number 1 if the two expressions are structurally equal, and 0 otherwise.
Strings, numbers and maps may be compared, but both operands must be of the same
type.

 i <- 1 == 1; // 'i' contains 1
 i <- "s" == "S"; // 'i' contains 0

Assignment lvalue '<-' expr

Returns the value of the second operand, and also stores that value into the first operand.
Accordingly, the types of the first and second operands must be the same.

 j <- i <- 1 == 1; // 'i' and 'j' contains 1, if both i and j are # vars

Function Calls name '(' expr1 ';' expr2 ';' ... ')'

Function calls evaluated as follows: first all of the arguments (the expressions within
parenthesis) are evaluated, left-to-right. Then the function code is called and executed.
The return value is precisely the value returned by the function. In the case that the
function's return type is none, no value is returned.

Unlike variables, functions need not necessarily be declared prior to use, but the name
must have a matching declaration somewhere in the program. Moreover, the number and
types of the expressions given as arguments to the function must match with the number
and types of the parameters given in that function's declaration.

Parameters are passed by reference.

3.4 Statements

Statements comprise the bulk of a strlang program. Statements are executed in sequence.
In addition to simple expressions, statements include loop and conditional control
structures, logical code blocks, and return statements. Each type of statement is
described in detail below.

Variable Declarations type name ';'

All variables must be declared prior to use. The declaration associates a type to a given
name. The type may be any of the types given above, save for ^ (none). Unlike other
types of statements, variable declarations may only appear at the beginning of a block, or

Strlang Project Report 16

at the beginning of a program before any other code. Declarations not within any block
are considered global. Declarations within a block are considered local to that block.

All variables are initialized automatically. Number variables are set to zero by default,
strings to the empty string, and maps to a map containing no keys.

Expressions expr ';'

Expression statements are evaluated according to the rules described in the previous
section.

Return '->' expropt ';'

Return statements are used to stop execution of the current function and return control to
the calling function, at the place where the current function was called. The associated
expression is evaluated, and its value is given back to the caller. The type of the
expression must match the return type of the function. Functions with return type of
'none' should omit the expression portion of the statement.

Blocks '{' decl_listopt stmt_listopt '}'

Blocks are logical units of code. Blocks consist of grouping markers (curly braces)
around an optional list of variable declarations followed by an optional list of statements.
Variables declared within a block are not valid outside that block. Two variables of the
same name may not be declared in the same scope. Within a block, references to a name
are bound to the variable declared in the nearest enclosing scope.

Conditionals '[' expr ']' block or '[' expr ']' block '![]' block

In a conditional statement, the expression is first evaluated and if the result is non-zero,
the block immediately after is executed. The expression must be of type number. If the
result of evaluating the expression is zero and the conditional uses the second form, the
second block is executed.

Loops '<' expr '>' block

In a loop statement, the expression is first evaluated. If the result is non-zero, the
following block is executed and then control moves back to the top of the loop, where the
process repeats. The expression for a loop must be of type number.

3.5 Functions

Functions name '(' decl_list ')' '->' type block or
 name '(' '^' ')' '->' type block

Functions in strlang consist of a signature and a block. The signature is the name,
declaration list, and type. The declaration list indicates the names and types of the input

Strlang Project Report 17

parameters for the function (or ^ for none). The type indicates the kind of value that will
be returned to the caller. Finally, the block contains the actual code of the function.

Function names must be unique within a program. Variables also may not use the same
names as functions. The scope of a function is the entire program.

Variables declared in the input parameter section have the same scope as variables
declared at the top of the function's code block.

A functions with a return type other than ^ and lacking an explicit return statement will
automatically return zero, the empty string, or an empty map, in accordance with the
return type given in its signature.

3.6 Program Structure

Program decl_listopt func_list

A strlang program consists of an optional list of variable declarations, followed by a list
functions. Variables declared at the program level have program-wide scope.

Functions need not be declared in any particular order in a strlang program. However,
every strlang program is required to contain a function by the name of main with the
following signature:

 main(^) -> ^

Execution of a strlang program begins with the first statement in the code block of this
main function. The program is then executed statement-by-statement, as described
above.

3.7 Built-in Functions

strlang provides a few built-in functions to facilitate input and output and conversion
between different types.

Signature Description
open($ io_type;
 $ filename) -> ^

open() opens an input or output stream for subsequent
reads or writes.

If io_type matches "in", it will attempt to open filename for
reading and use that file for subsequent read() calls. If
filename is "stdin", it will use standard input.

If io_type match "out", it will attempt to open filename for
writing and use it for subsequent write() calls. If filename
is "stdout", it will use standard output.

read(^) -> $ read() gets the next line of input from the current input

Strlang Project Report 18

stream, and returns it as a string.
end_input(^) -> # end_input returns 1 if the input stream has reached the end

of input, and 0 otherwise.
write($ outstr) -> ^ write() prints the string outstr to the current output stream.
to_num($ str) -> # to_num() converts a string to a number, which it returns.
to_string(# num) -> $ to_string() converts a number to string, which it returns.
exit(^) -> # exit() terminates the current program, returning the given

number value to the calling environment.

3.8 Syntax Summary

program:
 decl_list func_list func

decl_list:
 /* empty */
 decl_list decl ;

func_list:
 /* empty */
 func_list func

func:
 name (formals_list_opt) -> ret_type block

decl:
 type name

type:
 $ /* string */
 # /* number */
 %[$; $] /* map from string to string */
 %[$; #] /* map from string to number */
 %[#; $] /* map from number to string */
 %[#; #] /* map from number to number */

formals_list_opt:
 ^ /* void - empty argument list */
 formals_list

formals_list:
 decl
 decl ; formals_list

ret_type:
 ^ /* void - no return value */
 type

block:
 { decl_list stmt_list }

stmt_list:
 /* empty */
 stmt stmt_list

stmt:

Strlang Project Report 19

 block /* code block */
 expr ; /* single expression */
 < expr > block /* while(expr) block */
 [expr] block /* if(expr) block
 [expr] block ![] block /* if(expr) block else block */
 -> ; /* return; */
 -> expr; /* return expr; */

expr:
 expr binop expr /* binary operation */
 unop expr /* unary operation */
 expr ~ expr ~ expr /* search/replace */
 lvalue <- expr /* assignment */
 (expr) /* grouping */
 name (actuals_list_opt) /* function call */
 lvalue /* variable */
 number_literal /* number literal: [0-9]+ */
 string_literal /* string literal: "[^\"]*" */

lvalue:
 name /* variable */
 name [expr] /* map accessor variable */

binop: /* any of the following */
 + - * / % == != < > <= >= | &

unop: /* any of the following */
 - ! ^ @@ @%

Strlang Project Report 20

Chapter 4

Project Plan

4.1 Team Responsibilities

The strlang project will be a one-person project. Due to the late start-date, the emphasis
will be on quickly settling on a feasible set of features to implement, carefully defining
the basic infrastructure so that a skeleton compiler can be rapidly written and then filling
out the individual features one at a time. To verify functionality, I will be adding tests as
I add features with the intent of maximizing coverage.

4.2 Style Guide

To minimize time spent rereading code and debugging, I will be trying to adhere to the
following style recommendations:

1) Modular design. The compiler will be split logically into different passes, with
each one in its own file. Each piece should be relatively self-contained.

2) Self-documenting code. In particular, function names should be chosen for
descriptiveness, and arguments whose types are not obvious will be annotated
explicitly with their types

3) Design for the general. Avoid special cases and duplication, even at the cost of
efficiency.

4) Make use of the library. Before implementing anything generic, verify in the
OCaml library documentation that there isn't a built-in function that will do the
job.

5) Avoid external dependencies. The C++ code generated by the strlang compiler
should be as generic as possible, and avoid relying on specific compiler and
language features where possible.

4.3 Project Timeline

This following timeline indicates the various milestones for this project, and the dates by
which they should be finished.

11/7 Project begins
11/9 Project proposal - defined primary language features
11/14 Language Reference Manual, Parser and AST
11/21 Static Semantic analysis and symbol table
11/28 Simplification pass and basic code-generation
12/5 Testsuite and second-tier feature support
12/12 Sample applications and Design documentation

 4.4 Development Environment

Strlang Project Report 21

The strlang project will be built in a UNIX-compatible environment. The project's build
infrastructure will include Makefiles to automate the build process and bourne shell
scripts to run and verify testcases. The compiler will be written in the OCaml language,
relying on the ocamlc, ocamllex and ocamlyacc tools from the OCaml 3.13 distribution
available from inria.fr. Additionally, to convert the C++ code produced by the strlang
compiler to executable code, the g++ 4 compiler, including STL library is required, and
for regular expression support, the pcrecpp library must also be installed.

4.5 Project Development Log

These are the dates of major project developments.

11/7 Project begun
11/9 Language whitepaper completed
11/11 Parser completed, no conflicts
11/13 AST generation and dumping completed
11/14 Symbol table completed, rough semantic checking

implemented
11/16 Basic simplification pass and code generation

completed, first testcase compiles
11/18 Reworked semantic checking pass to generate clean

intermediate code
11/19 Reworked code-generation pass
11/20 Testsuite for semantic checks completed
11/22 Runtime testsuite covers basic features
11/27 Reworked simplification pass to further simplify

intermediate format
11/30 Runtime testsuite for advanced features completed
12/4 Language manual brought up to date with final feature

list
12/12 Primary example programs completed and verified
12/14 Code cleanup
12/17 Report writeup
12/20 Project presentation slides
12/21 Clean up compiler driver
12/22 Final testcases and examples

Strlang Project Report 22

Chapter 6

Architectural Design

The strlang compiler takes as input a single strlang program in source form, and outputs
that same program as C++ source code after having checked it for errors. The strlang
compiler consists of essentially 6 passes. These are the scanner, parser, symbol table
generator, static semantic checker, simplifier, and output passes. Each pass transforms or
annotates its input in preparation for the following pass.

6.1 Scanner

The scanner receives the original source code and transforms it into a stream of tokens. It
breaks up the input stream using an ocamllex generated automata.

5.2 Parser

strlang uses a bottom-up yacc-generated parser. The parser receives tokens from the
scanner and generates an abstract syntax tree from those tokens. Syntactic errors are
detected by the parser. The current implementation does not make any attempt at error
recovery or diagnosis for parse errors.

5.3 Symbol Table

Scanner

Parser

tokens

strlang source code

abstract
syntax tree

Symtab symbol table

Check

semantically
checked AST

Simplify

intermediate
format Output

C++ code

C++ compiler

executable

Strlang Compiler Architecture

Strlang Project Report 23

To avoid the need for forward declarations, strlang relies a two-pass process to check the
AST generated by the parser. The symtab pass builds a table of all the identifiers
(names) used in the source, their type, and the scope in which they were declared.

5.4 Static Semantic Checker

The 'check' pass essentially performs two related goals - it verifies that the operands in all
expressions are compatible, and creates a new abstract syntax tree in which the
expressions also include type information.

For unary and binary operators, the process of checking the types of the operands is
complicated by the fact that in strlang most operators are overloaded to handle more than
one type of operand. For example, the '+' sign means addition if the operands are both of
type number, but concatenation if the operands are both of type string. All operators on
non-number types are converted into function calls to stubs which are defined by in the
strlang library. This means that "a" + "b" is converted to __str_concat(a; b); .

For variables and function calls, all names are checked via the symbol table, so the names
in the AST (basically just strings) are replaced by the variable or function signatures, as
defined in that table. For function calls, the number and type of the arguments are all
verified against the function's signature. For assignment, the types of the rvalue and
lvalue are compared.

In addition to expressions, the checking pass verifies certain attributes of statements.
Return statements are checked against the signature of the enclosing function, to make
sure the right type of value is returned. The expressions in loop headers and conditionals
are also verified to be of number type.

Finally, this pass confirms that the program does in fact have a main function defined.

5.5 Simplification

The 'simple' pass turns the checked AST into a simplified intermediate representation.
This simplification flattens functions to a single scope/block, unwinds complex
expressions and converts loops and conditional to jumps and labels.

The difference between simplified and complex expressions is that in simplified
expressions, operands must be names, they cannot be other expressions. As a result, the
compiler is responsible for creating a number of temporary storage units, to hold
intermediate results in complex expressions. Although this seems quite inefficient, it is
actually analogous to what many real compilers do, prior to optimization.

Removing conditionals and loops is simply a matter of putting labels and jumps in the
appropriate spots. For instance, with a loop, the test is done at the end of the body, and if
it succeeds, you must jump to the top of the loop, just before the first statement.

Strlang Project Report 24

Once the conditionals and loops are gone, the other blocks can be safely flattened. The
only caveat is that if a variable in an inner block has the same name as a variable in an
outer block, there could be a conflict. This is addressed by including the scope id as part
of the variable's original data, allowing the two to be differentiated. However, because
declarations must all occur prior to regular statements, all declarations must then be
moved to the beginning of the function.

Simplification Examples
Before After
a <- a + 3 * 4; tmp1 <- 3;

tmp2 <- 4;
tmp3 <- tmp1 * tmp2;
a <- a + tmp3;

f(3; 4; c); tmp1 <- 3;
tmp2 <- 4;
f(tmp1; tmp2; c);

< a != 2 > { stmt_list } goto endloop;
startloop:
stmt_list
endloop:
tmp1 <- 2;
tmp2 <- a != tmp1;
cond_goto tmp2 startloop;

[a != 2] { stmt_list } ![] {
stmt_list2 }

tmp1 <- 2;
tmp2 <- a != tmp1;
tmp3 <- !tmp2;
cond_goto tmp3 else;
stmt_list
goto endif;
else:
stmt_list2
endif:

f(^) -> ^
{
 #a;
 {
 #a;
 a <- 2;
 }
 a <- 1;
}

f(^) -> ^
{
 #a_scope1;
 #a_scope2;
 #tmp1;
 #tmp2;

 tmp1 <- 2;
 a_scope2 <- tmp1;

 tmp2 <- 1;
 a_scope1 <- tmp2;
}

5.6 Output

The 'output' pass is responsible for turning the intermediate format into C++ code. The
intermediate format is designed to map well onto a subset of C++, so this pass functions
basically like a pretty printer.

5.7 Dependencies

Strlang Project Report 25

The C++ code that is generated by strlang is reasonably self-contained and largely avoids
using features beyond those present in traditional C. It does however rely on the presence
of the strlib.h header file and the STL and PCRE libraries.

The STL library is used primarily for the <string> and <map> classes which are used to
implement the string and map types in the strlang language. These could be replaced
readily enough with simpler self-contained replacements, but that seemed beyond the
scope of the original project. The PCRE library is used to provide regular expression
processing for certain string operations.

The compiler relies a number of built-in OCaml libraries. The driver in particular uses
the 'Unix' OCaml module in order to directly exec the C++ compiler when requested.

The strlib.h header file was created in conjunction with the compiler and contains the
wrappers used for the various string and map operations that strlang supports. This code
could simply be emitted in-line in the output pass, obviating the need for a separate
header file. In practice though, the separate header solution proved significantly cleaner,
since emitting non-trivial blocks of literal C++ code via OCaml is actually fairly ugly and
inconvenient. A few of the wrappers in that header use templates to avoid having to
rewrite the same wrapper four times using different input parameter types. To avoid
messing around with pointers, pass-by-reference is done using C++ reference variables.
Other than that, no C++-specific features are used.

Strlang Project Report 26

Chapter 6

Test Plan

Because thorough testing is vitally important for a sophisticated piece of software like a
compiler, the test-suite was largely built concurrently with the compiler. The goal was to
maximize code coverage and feature coverage, ensuring that as many of the compiler's
features were tested as possible.

The test-suite is sub-divided into two categories: tests that cover the semantic verifier and
tests that cover code generation. Most tests are be unit tests, but a few larger programs
are tested for code-generation too.

For the semantic verifier, the goal was to ensure that no invalid program was accepted.
Accordingly, for each type of error that the verifier explicitly handled, I built a testcase.
These testcases are thus designed to fail in the compilation phase.

For the code-generation part of the equation, I built a variety of small programs, each
intended to cover one particular type of code that the compiler must be able to produce
correctly. These are both compile and runtime tests in that they are expected to compile,
and to run and produce a particular output.

The test-suite was run regularly, via script. For the semantic tests, the error messages
output are compared against the expected errors for that input. In the code-generation
case, the output of running the program is compared against known-good output from
running the same program.

6.1 The Testsuite

The test-suite for strlang consists of 39 tests.

$./test.sh
tests/check/bad-assign1.str // invalid assignments
tests/check/bad-assign2.str
tests/check/bad-assign3.str
tests/check/bad-call1.str // invalid function calls
tests/check/bad-call2.str
tests/check/bad-call3.str
tests/check/bad-if.str // invalid conditional
tests/check/bad-main.str // main given bad arguments
tests/check/bad-operands-add.str // invalid operands for operators
tests/check/bad-operands-cmp.str
tests/check/bad-operands-div.str
tests/check/bad-operands-len.str
tests/check/bad-operands-mod.str
tests/check/bad-operands-mul.str
tests/check/bad-operands-mul2.str
tests/check/bad-operands-neg.str
tests/check/bad-operands-neg2.str
tests/check/bad-operands-sub.str
tests/check/bad-ret1.str // invalid return statement

Strlang Project Report 27

tests/check/bad-var.str // invalid variable declaration
tests/check/bad-while.str // invalid loops
tests/check/empty.str // missing main function
tests/check/redeclared1.str // redeclaring the same identifier
tests/check/redeclared2.str
tests/check/undeclared-var1.str // using an undeclared identifier
tests/check/undeclared-var2.str
tests/run/arithmetic1.str // functionality tests
tests/run/arithmetic2.str // arithmetic operators
tests/run/builtin.str // built-in functions
tests/run/fib.str // compute the fibonacci sequence
tests/run/hello-long.str // extended 'hello world'
tests/run/hello.str // simple hello world
tests/run/loop1.str // testing that loops behave
tests/run/map1.str // testing map operations
tests/run/modinv.str // compute modular inverses and gcds
tests/run/ret.str // test different sort of return stmts
tests/run/sort.str // sort entries from a file
tests/run/stringfun.str // string banner fun
tests/run/strings1.str // test string operators
SUCCEEDED
$

6.2 Example: fibonacci

This simple program computes the 17th number in the Fibonacci sequence.

// fib.str
fib(#i) -> #
{
 [(i == 1) | (i == 2)] {-> 1;}
 ![] { -> (fib(i - 1) + fib(i - 2)); }
}

main(^) -> #
{
 write("fib(17) = " + to_string(fib(17)) + "\n");
}

The compiler produces the following C++ code from this source code.

// fib.cpp
 #include "strlib.h"

int fib(int&);

int main(void);

int fib(int& i_3)
{
 int __reg_num_12_(0);
 int __reg_num_9_(0);
 int __reg_num_8_(0);
 int __reg_num_11_(0);
 int __reg_num_10_(0);
 int __reg_num_20_(0);
 int __reg_num_16_(0);
 int __reg_num_15_(0);

Strlang Project Report 28

 int __reg_num_14_(0);
 int __reg_num_19_(0);
 int __reg_num_18_(0);
 int __reg_num_17_(0);
 int __reg_num_13_(0);
 int __reg_num_21_(0);
 __reg_num_8_ = 1;
 __reg_num_9_ = i_3 == __reg_num_8_;
 __reg_num_10_ = 2;
 __reg_num_11_ = i_3 == __reg_num_10_;
 __reg_num_12_ = __reg_num_9_ || __reg_num_11_;
 if(__reg_num_12_) goto __LABEL_0;
 __reg_num_14_ = 1;
 __reg_num_15_ = i_3 - __reg_num_14_;
 __reg_num_16_ = fib(__reg_num_15_);
 __reg_num_17_ = 2;
 __reg_num_18_ = i_3 - __reg_num_17_;
 __reg_num_19_ = fib(__reg_num_18_);
 __reg_num_20_ = __reg_num_16_ + __reg_num_19_;
 return __reg_num_20_;
 goto __LABEL_1;
__LABEL_0: ;
 __reg_num_13_ = 1;
 return __reg_num_13_;
__LABEL_1: ;
 return __reg_num_21_;
}

int main(void)
{
 string __reg_str_6_("");
 string __reg_str_5_("");
 string __reg_str_4_("");
 string __reg_str_3_("");
 int __reg_num_2_(0);
 int __reg_num_1_(0);
 string __reg_str_0_("");
 int __reg_num_7_(0);
 __reg_str_5_ = "\n";
 __reg_num_1_ = 17;
 __reg_num_2_ = fib(__reg_num_1_);
 __reg_str_3_ = to_string(__reg_num_2_);
 __reg_str_0_ = "fib(17) = ";
 __reg_str_4_ = __str_concat(__reg_str_0_, __reg_str_3_);
 __reg_str_6_ = __str_concat(__reg_str_4_, __reg_str_5_);
 write(__reg_str_6_);
 return __reg_num_7_;
}

6.3 Example: stringfun

This program manipulates a given string, splitting it up and replacing certain characters
with other ones, to a good end. It also demonstrates how regular expressions fit into
strlang.

Strlang Project Report 29

// stringsfun.str

main(^) -> #
{
 $str;
 $vowelly;
 $vowelless;
 #i;

 str <- "Clinton deploys vowels to Bosnia. Cities of Sjlbvdnzv, Grzny to
Be First Recipients.";

 write("Headline:\n" + str + "\n");

 i <- str % "\\. ";
 vowelless <- str - (i + 1);
 vowelly <- munge(str - -(i + 1));

 write("\nAfter operation vowel storm:\n" + vowelly + vowelless + "\n");

}

munge($str) -> $
{
 $tmp;
 tmp <- str ~ "[ln]" ~ "o";
 tmp <- tmp ~ "[rs]" ~ "e";
 tmp <- tmp ~ "[t]" ~ "a";
 tmp <- tmp ~ "[zjv]" ~ "i";
 -> tmp;
}

This is the C++ code produced by the compiler for the stringsfun program.

// stringsfun.cpp
#include "strlib.h"

int main(void);

string munge(string&);

int main(void)
{
 string str_1("");
 string vowelly_1("");
 string vowelless_1("");
 int i_1(0);
 string __reg_str_32_("");
 string __reg_str_31_("");
 string __reg_str_30_("");
 string __reg_str_29_("");
 string __reg_str_28_("");
 int __reg_num_27_(0);
 string __reg_str_26_("");
 string __reg_str_25_("");
 int __reg_num_24_(0);
 int __reg_num_23_(0);
 string __reg_str_22_("");

Strlang Project Report 30

 string __reg_str_21_("");
 int __reg_num_20_(0);
 int __reg_num_19_(0);
 int __reg_num_18_(0);
 string __reg_str_17_("");
 string __reg_str_16_("");
 string __reg_str_15_("");
 string __reg_str_14_("");
 string __reg_str_13_("");
 int __reg_num_33_(0);
 __reg_str_32_ = "Clinton deploys vowels to Bosnia. Cities of Sjlbvdnzv,
Grzny to Be First Recipients.";
 str_1 = __reg_str_32_;
 __reg_str_30_ = "\n";
 __reg_str_28_ = "Headline:\n";
 __reg_str_29_ = __str_concat(__reg_str_28_, str_1);
 __reg_str_31_ = __str_concat(__reg_str_29_, __reg_str_30_);
 write(__reg_str_31_);
 __reg_str_26_ = "\\. ";
 __reg_num_27_ = __str_index(str_1, __reg_str_26_);
 i_1 = __reg_num_27_;
 __reg_num_23_ = 1;
 __reg_num_24_ = i_1 + __reg_num_23_;
 __reg_str_25_ = __str_substr(str_1, __reg_num_24_);
 vowelless_1 = __reg_str_25_;
 __reg_num_18_ = 1;
 __reg_num_19_ = i_1 + __reg_num_18_;
 __reg_num_20_ = - __reg_num_19_;
 __reg_str_21_ = __str_substr(str_1, __reg_num_20_);
 __reg_str_22_ = munge(__reg_str_21_);
 vowelly_1 = __reg_str_22_;
 __reg_str_16_ = "\n";
 __reg_str_13_ = "\nAfter operation vowel storm:\n";
 __reg_str_14_ = __str_concat(__reg_str_13_, vowelly_1);
 __reg_str_15_ = __str_concat(__reg_str_14_, vowelless_1);
 __reg_str_17_ = __str_concat(__reg_str_15_, __reg_str_16_);
 write(__reg_str_17_);
 return __reg_num_33_;
}

string munge(string& str_2)
{
 string tmp_2("");
 string __reg_str_11_("");
 string __reg_str_10_("");
 string __reg_str_9_("");
 string __reg_str_8_("");
 string __reg_str_7_("");
 string __reg_str_6_("");
 string __reg_str_5_("");
 string __reg_str_4_("");
 string __reg_str_3_("");
 string __reg_str_2_("");
 string __reg_str_1_("");
 string __reg_str_0_("");
 string __reg_str_12_("");
 __reg_str_10_ = "o";
 __reg_str_9_ = "[ln]";
 __reg_str_11_ = __str_replace(str_2, __reg_str_9_, __reg_str_10_);
 tmp_2 = __reg_str_11_;
 __reg_str_7_ = "e";

Strlang Project Report 31

 __reg_str_6_ = "[rs]";
 __reg_str_8_ = __str_replace(tmp_2, __reg_str_6_, __reg_str_7_);
 tmp_2 = __reg_str_8_;
 __reg_str_4_ = "a";
 __reg_str_3_ = "[t]";
 __reg_str_5_ = __str_replace(tmp_2, __reg_str_3_, __reg_str_4_);
 tmp_2 = __reg_str_5_;
 __reg_str_1_ = "i";
 __reg_str_0_ = "[zjv]";
 __reg_str_2_ = __str_replace(tmp_2, __reg_str_0_, __reg_str_1_);
 tmp_2 = __reg_str_2_;
 return tmp_2;
 return __reg_str_12_;
}

Strlang Project Report 32

Chapter 7

Lessons Learned

The advantage of being a one-person team is that you are the one determining the
objectives and how to get there. That said, designing a language and a compiler is not a
trivial process. I left my original group due to differences in goals and approach. As a
result, the project started effectively a month behind schedule. Even so, the experience
with the original group was actually valuable. The debates and discussions we had
helped me to get a good sense of the issues to consider when designing my language.
Moreover, I learned to prioritize clarity and simplicity above all else, and to keep
practical considerations uppermost.

The most difficult part of doing a project on your own is the lack of external feedback.
While I was able to get lots of feedback when designing the language, I could definitely
have benefited from somebody looking at my code and questioning my approach during
the implementation phase. At several points, I was forced to essentially rewrite one of
the compiler passes from scratch because my design had neglected to take into account
some important consideration.

Another challenge with the project was pacing. Concerned about time constraints, I
wound up implementing the bulk of the compiler in around 4 days. This was good in
terms of time, but it meant that after rushing the initial implementation, I then spent
several weeks beating out bugs and cleaning up hacks. A more balanced schedule would
likely have meant saving time in the long-term.

One surprise was the difficulty in writing good testcases. While I attempted to be
exhaustive, writing simple testcases for each and every feature and implementation detail,
crafting more sophisticated testcases was not easy. I also discovered on numerous
occasions that features I thought I had tested were actually buggy, but I had simply failed
to be comprehensive in my testcase.

Regarding the OCaml language, I was a skeptic at the beginning. However, it quickly
grew on me. Debugging in a strongly typed language like OCaml is a dream compared to
in C or C++. I simply spent a lot less time hunting for the source of a bug, and a lot more
time writing code. While the omnipresent type errors were annoying, they certainly
proved less difficult and more informative than the segmentation faults I would have
encountered attempting the project in a more conventional language.

All in all, I enjoyed working on this project a great deal and I hope to be doing further
work or research on compilers and programming languages in the future.

Strlang Project Report 33

Appendix

Source Code Listing

Ast.ml

(* abstract syntax tree
 -defines the AST produces by the parser
 -includes functions to dump the AST to screen
*)

type bop = Plus | Minus | Times | Divide | Mod | Less | Greater | Leq | Geq |
 Eq | Neq | Or | And

type uop = Neg | Not | Len | Keys | Vals

let depth = ref 0

type simple_type =
 Str
 | Num
 | None (* expressions with no type - void functions *)

type var_type =
 Map of simple_type * simple_type
 | Simple of simple_type

type var = string * var_type

type var_decl = string * var_type * int
type func_decl = string * var_type * var_type list * int

type decl =
 FuncDecl of func_decl
 | VarDecl of var_decl

type expr =
 StrLiteral of string
 | NumLiteral of int
 | Replace of expr * expr * expr (* string matching *)
 | Binop of expr * bop * expr
 | Unop of expr * uop
 | Assign of lvalue * expr (* lvalue and right side *)
 | FuncCall of string * expr list
 | Rvalue of lvalue (* variable (on the right side) *)
 | NoExpr

and lvalue = string * expr (* expression is optional - map accessor *)

type stmt =
 CodeBlock of block
 | Loop of expr * block
 | Conditional of expr * block * block
 | Return of expr
 | Expression of expr

and block = {
 locals: var list;
 statements: stmt list;
 block_id: int;
}

and func = {
 name : string;
 ret_type: var_type;
 body: block;

Strlang Project Report 34

 formals : var list
}

type program = {
 globals: var list;
 functions: func list;
 block_count: int
}

let rec tabs_helper = function
 0 -> ""
 | x -> " " ^ tabs_helper (x-1)

let rec tabs = function
 0 -> tabs_helper depth.contents
 | x -> ""

let string_of_binop = function
 Plus -> "+" | Minus -> "-" | Times -> "*" | Divide -> "/" | Mod -> "%"
 | Less -> "<" | Greater -> ">" | Leq -> "<=" | Geq -> ">=" | Eq -> "=="
 | Neq -> "!=" | Or -> "|" | And -> "&"

let string_of_unop = function
 Neg -> "-" | Not -> "!" | Len -> "^" | Keys -> "@%" | Vals -> "@@"

let rec string_of_lval = function
 (name, expr) -> name ^ if expr <> NoExpr then "[" ^ string_of_expr expr ^ "]" else
""

and string_of_expr = function
 StrLiteral(s) -> s
 | NumLiteral(l) -> string_of_int l
 | Replace(e1, e2, e3) -> string_of_expr e1 ^ " ~ " ^ string_of_expr e2 ^ " ~ " ^
string_of_expr e3
 | Binop(e1, op, e2) -> string_of_expr e1 ^ " " ^ string_of_binop op ^ " " ^
string_of_expr e2
 | Unop(e, o) -> string_of_unop o ^ string_of_expr e
 | Assign(lv, e) -> string_of_lval lv ^ " <- " ^ string_of_expr e
 | FuncCall(f, v) -> f ^ "(" ^ String.concat "; " (List.map string_of_expr v) ^ ")"
 | Rvalue(lv) -> string_of_lval lv
 | NoExpr -> ""

let rec string_of_stmt = function
 CodeBlock(b) -> string_of_block b
 | Loop(e, b) ->
 "\n" ^ tabs 0 ^ "< " ^ string_of_expr e ^ " >\n" ^ string_of_block b
 | Conditional(e, iftrue, iffalse) ->
 "\n" ^ tabs 0 ^ "[" ^ string_of_expr e ^ "]\n" ^ string_of_block iftrue ^
 if iffalse.block_id != -1 then tabs 0 ^ "![]\n" ^ string_of_block
iffalse
 else ""
 | Return(e) -> tabs 0 ^ "-> " ^ string_of_expr e ^ ";\n"
 | Expression(e) -> tabs 0 ^ string_of_expr e ^ ";\n"

and string_of_block (b:block) =
 let s = tabs 0 ^ "{\n" in
 depth := depth.contents + 1;
 let s = s ^ string_of_vars b.locals ^ (String.concat "" (List.map string_of_stmt
b.statements)) in
 depth := depth.contents - 1; let s = s ^ "" in s ^ tabs 0 ^ "}\n\n"

and string_of_formals = function
 [] -> "^"
 | formals -> String.concat "; " (List.map string_of_var formals)

and string_of_func (f:func) =
 let formals = string_of_formals f.formals in
 let ret_type = string_of_type f.ret_type in
 let ret_type = if ret_type = "" then "^" else ret_type in

Strlang Project Report 35

 tabs 0 ^ f.name ^ "(" ^ formals ^ ")"
 ^ " -> " ^ ret_type ^ "\n" ^ string_of_block f.body

and string_of_funclist = function
 [] -> ""
 | flist -> String.concat "\n" (List.map string_of_func flist)

and string_of_var (v:var) =
 (string_of_type (snd v)) ^ " " ^ fst v

and string_of_vars = function
 [] -> ""
 | v -> tabs 0 ^ String.concat (";\n" ^ tabs 0) (List.map string_of_var v) ^
";\n\n"

and string_of_type = function
 Map(k,v) -> "%[" ^ (string_of_simple_type k) ^ ";" ^ (string_of_simple_type
v) ^ "]"
 | Simple(t) -> string_of_simple_type t

and string_of_simple_type = function
 Str -> "$"
 | Num -> "#"
 | None -> "^"

let string_of_decl = function
 VarDecl(n, t, id) -> (string_of_int id) ^ " " ^ n ^ " " ^ string_of_type t
 | FuncDecl(n, t, f, id) ->
 (string_of_int id) ^ " " ^ n ^ " (" ^ String.concat "; " (List.map
string_of_type f) ^
 ") " ^ string_of_type t

let string_of_program (p:program) =
 depth := 0; string_of_vars p.globals ^ string_of_funclist p.functions

Strlang Project Report 36

Check.ml

(* checking pass
 -perform semantic checks on all expressions
 -annotate expressions in AST with type information
 -resolve identifier names
*)

open Ast

(* checked c_expression *)
type c_expr =
 StrLiteral of string
 | NumLiteral of int
 | Binop of var_type * c_expr * bop * c_expr
 | Unop of var_type * c_expr * uop
 | Assign of var_type * c_lvalue * c_expr (* lvalue and right side *)
 | FuncCall of func_decl * c_expr list
 | Rvalue of var_type * c_lvalue (* variable (on the right side) *)
 | NoExpr

and c_lvalue = var_decl * c_expr

type c_stmt =
 CodeBlock of c_block
 | Loop of c_expr * c_block
 | Conditional of c_expr * c_block * c_block
 | Return of c_expr
 | Expression of c_expr

and c_block = {
 c_locals: var_decl list;
 c_statements: c_stmt list;
 c_block_id: int;
}

and c_func = {
 c_formals: var_decl list;
 c_header: func_decl;
 c_body: c_block;
}

type c_program = {
 c_globals: var_decl list;
 c_functions: c_func list;
 c_block_count: int
}

let build_fdecl (name:string) (ret:var_type) (args:var_type list) =
 (name, ret, args, 0)

let get_ret_of_fdecl (f:func_decl) =
 let (_,t,_,_) = f in
 t

let main_fdecl (f:c_func) =
 let fdecl = f.c_header in
 let (name, t, formals, _) = fdecl in
 if name = "main" && t = Simple(Num) && formals = [] then true
 else false

let type_of_expr = function
 StrLiteral(s) -> Simple(Str)
 | NumLiteral(n) -> Simple(Num)
 | NoExpr -> Simple(None)
 | Binop(t,_,_,_) -> t
 | Unop(t,_,_) -> t
 | Rvalue(t,_) -> t

Strlang Project Report 37

 | Assign(t,_,_) -> t
 | FuncCall(fdecl,_) -> let (_,t,_,_) = fdecl in t

let binop_error (t1:var_type) (t2:var_type) (op:Ast.bop) =
 raise(Failure("operator " ^ (string_of_binop op) ^ " not compatible with
expressions of type " ^
 (string_of_type t1) ^ " and " ^ (string_of_type t2)))

let unop_error (t:var_type) (op:Ast.uop) =
 raise(Failure("operator " ^ (string_of_unop op) ^ " not compatible with expression
of type " ^
 (string_of_type t)))

let check_binop (c1:c_expr) (c2:c_expr) (op:Ast.bop) =
 let (t1, t2) = (type_of_expr c1, type_of_expr c2) in
 match(t1, t2) with
 (Simple(Num), Simple(Num)) -> Binop(Simple(Num), c1, op, c2) (* standard
arithmetic binops *)
 | (Simple(Str), Simple(Str)) -> (* string binops with 2 string operands *)
 let f = (match op with
 Less -> build_fdecl "__str_less" (Simple(Num)) [t1; t2]
 | Leq -> build_fdecl "__str_lessequal" (Simple(Num)) [t1; t2]
 | Greater -> build_fdecl "__str_greater" (Simple(Num)) [t1; t2]
 | Geq -> build_fdecl "__str_greaterequal" (Simple(Num)) [t1; t2]
 | Eq -> build_fdecl "__str_equal" (Simple(Num)) [t1; t2]
 | Neq -> build_fdecl "__str_notequal" (Simple(Num)) [t1; t2]
 | Plus -> build_fdecl "__str_concat" t1 [t1; t2]
 | Divide ->build_fdecl "__str_match" t1 [t1; t2]
 | Mod -> build_fdecl "__str_index" (Simple(Num)) [t1; t2]
 | _ -> binop_error t1 t2 op) in
 FuncCall(f, [c1; c2])
 | (Simple(Str), Simple(Num)) -> (* string binops with 1 string operand *)
 (match op with
 Minus -> let f = build_fdecl "__str_substr" t1 [t1; t2] in
 FuncCall(f, [c1; c2])
 | _ -> binop_error t1 t2 op)
 | (Map(k1,v1), Map(k2,v2)) -> (* map binops *)
 if k1 = k2 && v1 = v2 then
 let f = (match op with
 Eq -> build_fdecl "__map_equal" (Simple(Num)) [t1; t2]
 | Neq -> build_fdecl "__map_notequal" (Simple(Num)) [t1;
t2]
 | _ -> binop_error t1 t2 op) in
 FuncCall(f, [c1; c2])
 else binop_error t1 t2 op
 | (Map(k, v), Simple(l)) ->
 if k = l then
 let f = (match op with
 Minus -> build_fdecl "__map_remove" (Simple(v)) [t1;
t2]
 | Mod -> build_fdecl "__map_exists" (Simple(Num))
[t1; t2]
 | _ -> binop_error t1 t2 op) in
 FuncCall(f, [c1; c2])
 else binop_error t1 t2 op
 | _ -> binop_error t1 t2 op

let check_unop (c:c_expr) (op:Ast.uop) =
 let t = type_of_expr c in
 match t with
 Simple(Num) ->
 (match op with
 (Neg | Not) -> Unop(Simple(Num), c, op)
 | _ -> unop_error t op)
 | Simple(Str) ->
 (match op with
 Len -> let f = build_fdecl "__str_len" (Simple(Num)) [t] in
 FuncCall(f, [c])
 | _ -> unop_error t op)

Strlang Project Report 38

 | Map(k, v) ->
 let f = (match op with
 Len -> build_fdecl "__map_len" (Simple(Num)) [t]
 | Keys -> build_fdecl "__map_keys" (Map(Num, k)) [t]
 | Vals -> build_fdecl "__map_vals" (Map(Num, v)) [t]
 | _ -> unop_error t op) in
 FuncCall(f, [c])
 | _ -> unop_error t op

let rec compare_arglists formals actuals =
 match (formals,actuals) with
 ([],[]) -> true
 | (head1::tail1, head2::tail2)
 -> (head1 = head2) && compare_arglists tail1 tail2
 | _ -> false

and check_func (name:string) (cl:c_expr list) env =
 let decl = Symtab.symtab_find name env in
 let func = (match decl with FuncDecl(f) -> f
 | _ -> raise(Failure("symbol " ^ name ^ " is not a function"))) in
 let (_,t,formals,_) = func in
 let actuals = List.map type_of_expr cl in
 if (List.length formals) = (List.length actuals) then
 if compare_arglists formals actuals then
 FuncCall(func, cl)
 else
 raise(Failure("function " ^ name ^ "'s argument types don't match
its formals"))
 else raise(Failure("function " ^ name ^ " expected " ^ (string_of_int (List.length
actuals)) ^
 " arguments but called with " ^ (string_of_int (List.length formals))))

and check_lvalue (lv:lvalue) (checked:c_expr) env =
 let (name,e) = lv in
 let decl = Symtab.symtab_find name env in
 let var = (match decl with VarDecl(v) -> v
 | _ -> raise(Failure("symbol " ^ name ^ " is not a variable"))) in
 let (_,base_t,_) = var in
 let t = type_of_expr checked in
 match t with
 Simple(None) -> (base_t, (var, checked))
 | _ ->
 match base_t with
 Map(k, v) ->
 if t = Simple(k) then (Simple(v), (var, checked))
 else raise(Failure("map type does not match accessor
type"))
 | _ -> raise(Failure("cannot apply accessor to non-map"))

and check_expr (e:expr) env =
 match e with
 Ast.StrLiteral(s) -> StrLiteral(s)
 | Ast.NumLiteral(n) -> NumLiteral(n)
 | Ast.NoExpr -> NoExpr
 | Ast.Replace(e1, e2, e3) ->
 let c1, c2 = (check_expr e1 env, check_expr e2 env) in
 let c3 = check_expr e3 env in
 let (t1, t2, t3) = (type_of_expr c1, type_of_expr c2, type_of_expr c3) in
 if(t1 = t2 && t2 = t3 && t3 = Simple(Str)) then
 let f = build_fdecl "__str_replace" t1 [t1; t2; t3] in
 FuncCall(f, [c1; c2; c3])
 else raise(Failure("operator ~ requires 3 string expressions"))
 | Ast.Binop(e1, op, e2) ->
 let (c1, c2) = (check_expr e1 env, check_expr e2 env) in
 check_binop c1 c2 op
 | Ast.Unop(e1, op) ->
 let checked = check_expr e1 env in
 check_unop checked op
 | Ast.Rvalue(l) ->

Strlang Project Report 39

 let checked = check_expr (snd l) env in
 let (result_t, lv) = check_lvalue l checked env in
 Rvalue(result_t, lv)
 | Ast.Assign(l, ae) ->
 let checked = check_expr ae env in
 let deref = check_expr (snd l) env in
 let (result_t, lv) = check_lvalue l deref env in
 let t = type_of_expr checked in
 if t = result_t then Assign(t, lv, checked)
 else
 (match (checked, result_t) with
 (NumLiteral(0), Map(_,_)) -> let f = build_fdecl
"__map_empty" result_t [result_t] in
 FuncCall(f, [Rvalue(result_t, lv)])
 | _ -> raise(Failure("assignment not compatible with expressions of
type " ^
 string_of_type result_t ^ " and " ^ string_of_type t)))
 | Ast.FuncCall(name, el) ->
 let checked = check_exprlist el env in
 check_func name checked env

and check_exprlist (el:expr list) env =
 match el with
 [] -> []
 | head :: tail -> (check_expr head env) :: (check_exprlist tail env)

(* check a single statement *)
let rec check_stmt (s:stmt) ret_type env =
 match s with
 Ast.CodeBlock(b) -> CodeBlock(check_block b ret_type env)
 | Ast.Loop(e, b) -> let checked = check_expr e env in
 if type_of_expr checked = Simple(Num) then Loop(checked, check_block b
ret_type env)
 else raise(Failure("loop condition expression must be numeric"))
 | Ast.Conditional(e, b1, b2) -> let checked = check_expr e env in
 if type_of_expr checked = Simple(Num) then Conditional(checked,
check_block b1 ret_type env, check_block b2 ret_type env)
 else raise(Failure("if condition expression must be numeric"))
 | Ast.Return(e) -> let checked = check_expr e env in
 let t = type_of_expr checked in
 if t = ret_type then Return(checked) else
 raise(Failure("function return type " ^ string_of_type ret_type ^ "
not compatible with expression of type " ^ string_of_type t))
 | Ast.Expression(e) -> Expression(check_expr e env)

(* check a list of statements *)
and check_stmtlist (s:stmt list) (ret_type:var_type) env =
 match s with
 [] -> []
 | head :: tail -> check_stmt head ret_type env :: check_stmtlist tail ret_type env

and check_vdecllist (v:var list) env =
 match v with
 [] -> []
 | head :: tail ->
 let decl = Symtab.symtab_find (fst head) env in
 match decl with
 FuncDecl(f) -> raise(Failure("symbol is not a variable"))
 | VarDecl(v) -> v :: check_vdecllist tail env

and check_fdecl (f:string) env =
 let decl = Symtab.symtab_find f env in
 match decl with
 VarDecl(v) -> raise(Failure("symbol is not a function"))
 | FuncDecl(f) -> f

(* check a block *)
and check_block (b:block) (ret_type:var_type) env =
 let vars = check_vdecllist b.locals (fst env, b.block_id) in

Strlang Project Report 40

 { c_locals = vars;
 c_statements = check_stmtlist b.statements ret_type (fst env, b.block_id);
 c_block_id = b.block_id}

(* check a function *)
and check_func (f:func) env =
 let checked = check_block f.body f.ret_type env in
 let formals = check_vdecllist f.formals (fst env, f.body.block_id) in
 { c_header = check_fdecl f.name env; c_body = checked; c_formals = formals }

(* check a function list *)
and check_funclist (funcs:func list) env =
 match funcs with
 [] -> []
 | head :: tail -> check_func head env :: check_funclist tail env

and check_main (f:c_func list) =
 if (List.filter main_fdecl f) = [] then false
 else true

let check_program (p:program) env =
 let vars = check_vdecllist p.globals env in
 let checked = check_funclist p.functions env in
 if (check_main checked) then {c_globals = vars; c_functions = checked;
c_block_count = p.block_count}
 else raise(Failure("function main(^) -> # not found"))

Strlang Project Report 41

Output.ml

(* output
 -takes simple IR produced by the simlification pass
 -outputs C++ code
*)

open Ast
open Check
open Simple

let type_of_var (v:simple_var) =
 let (_,t,_) = v in
 t

let c_of_bop = function
 Plus -> "+" | Minus -> "-" | Times -> "*" | Divide -> "/" | Mod -> "%"
 | Less -> "<" | Greater -> ">" | Leq -> "<=" | Geq -> ">=" | Eq -> "=="
 | Neq -> "!=" | Or -> "||" | And -> "&&"

let c_of_uop = function
 Neg -> "-" | Not -> "!" | _ -> raise(Failure("internal error"))

let c_of_var_type = function
 Simple(Str) -> "string"
 | Simple(Num) -> "int"
 | Simple(None) -> "void"
 | Map(k,v) ->
 "map <" ^ (match (k,v) with
 (Str,Str) -> "string,string"
 | (Str,Num) -> "string,int"
 | (Num,Num) -> "int,int"
 | (Num,Str) -> "int,string"
 | _ -> raise(Failure("internal error"))) ^ ">"

let c_of_param_type t =
 if t = Simple(None) then "void"
 else (c_of_var_type t) ^ "&"

let c_of_var_name (decl:simple_var) =
 let (name,_,id) = decl in
 let suffix = if id = -1 then "" else string_of_int id in
 name ^ "_" ^ suffix

let c_of_var_init = function
 Simple(Num) -> "(0)"
 | Simple(Str) -> "(\"\")"
 | Map(_,_) -> ""
 | _ -> raise(Failure("internal error"))

let c_of_var_decl (v:simple_var) =
 let (_, t, _) = v in
 (c_of_var_type t) ^ " " ^ c_of_var_name v

let c_of_param (p:simple_var) =
 let (_, t, _) = p in
 (c_of_param_type t) ^ " " ^ c_of_var_name p

let c_of_formals_list = function
 [] -> "void"
 | formals -> String.concat ", " (List.map c_of_param formals)

let c_of_actual_list = function
 [] -> ""
 | actuals -> String.concat ", " (List.map c_of_var_name actuals)

let c_of_var_decl_def (v:simple_var) =
 let (_,t,_) = v in
 (c_of_var_decl v) ^ (c_of_var_init t)

Strlang Project Report 42

let c_of_var_decl_list = function
 [] -> ""
 | vars-> (tabs 0 ^ (String.concat (";\n" ^ tabs 0) (List.map c_of_var_decl_def
vars)) ^ ";\n")

let c_of_func_decl_formals = function
 [] -> "void"
 | vars -> String.concat (", ") (List.map c_of_param_type vars)

let c_of_func_decl (f:simple_fdecl) =
 let (name, ret, formals, id) = f in
 c_of_var_type ret ^ " " ^ name ^ "(" ^ c_of_func_decl_formals formals ^ ");\n"

let c_of_func_decl_list = function
 [] -> ""
 | fdecls -> String.concat ("\n") (List.map c_of_func_decl fdecls) ^ "\n\n"

let c_of_method_call (result:simple_var) (fname:string) (receiver:simple_var) args =
 let(_,t,_) = result in
 (if t <> Simple(None) then (c_of_var_name result) ^ " = " else "") ^
(c_of_var_name receiver) ^ "." ^
 fname ^ "(" ^ (c_of_actual_list args) ^ ")"

let c_of_func_call (result:simple_var) (fname:string) (args:simple_var list) =
 let (_,t,_) = result in
 (if t <> Simple(None) then (c_of_var_name result) ^ " = " else "") ^ fname ^ "(" ^
 (c_of_actual_list args) ^ ")"

let c_of_func_name = function
 (name,_,_,_) -> name

let c_of_unop (result:simple_var) (op:Ast.uop) (expr:simple_var) =
 (c_of_var_name result) ^ " = " ^ c_of_uop op ^ " " ^ (c_of_var_name expr)

let c_of_binop (result:simple_var) (op:Ast.bop) (e1:simple_var) (e2:simple_var) =
 (c_of_var_name result) ^ " = " ^ (c_of_var_name e1) ^ " " ^
 c_of_bop op ^ " " ^ (c_of_var_name e2)

let c_of_expr = function
 Bin(r, op, e1, e2) -> (c_of_var_name r) ^ " = " ^ (c_of_var_name e1) ^ " " ^
 c_of_bop op ^ " " ^ (c_of_var_name e2)
 | Un(r, op, e) -> c_of_unop r op e
 | Lit(r, v) -> (c_of_var_name r) ^ " = " ^
 (match v with
 StrLit(s) -> s
 | NumLit(n) -> string_of_int n)
 | Deref(result, base, accessor) ->
 (c_of_var_name result) ^ " = " ^ (c_of_var_name base) ^ "[" ^
c_of_var_name accessor ^ "]"
 | Alias(base, accessor, input) ->
 let (_,t,_) = accessor in
 let extra = if t <> Simple(None) then "[" ^ (c_of_var_name accessor) ^ "]"
else "" in
 (c_of_var_name base) ^ extra ^ " = " ^ (c_of_var_name input)
 | Call(r, f, el) ->
 c_of_func_call r (c_of_func_name f) el

let rec c_of_stmt = function
 Decl(v) -> if type_of_var v <> Simple(None) then tabs 0 ^ (c_of_var_decl_def v) ^
";\n"
 else ""
 | If(r, l) -> tabs 0 ^ "if(" ^ (c_of_var_name r) ^ ") goto " ^ l ^ ";\n"
 | Label(s) -> s ^ ": ;\n"
 | Jmp(s) -> tabs 0 ^ "goto " ^ s ^";\n"
 | Ret(e) -> let (_,t,_) = e in tabs 0 ^ "return" ^ (if t <> Simple(None) then " "
^ c_of_var_name e else "") ^ ";\n"
 | Expr(e) -> tabs 0 ^ c_of_expr e ^ ";\n"

Strlang Project Report 43

and c_of_stmt_list = function
 [] -> ""
 | head::tail -> (c_of_stmt head) ^ (c_of_stmt_list tail)

and c_of_block (sl:simple_stmt list) =
 let s = "\n" ^ tabs 0 ^ "{\n" in
 depth := depth.contents + 1;
 let s = s ^ String.concat "" (List.map c_of_stmt sl) in
 depth := depth.contents - 1; s ^ tabs 0 ^ "}\n\n"

and c_of_header (header:simple_fdecl) (args:simple_var list) =
 let (name, ret, _, id) = header in
 tabs 0 ^ c_of_var_type ret ^ " " ^ name ^ "(" ^ c_of_formals_list args ^ ")"

and c_of_funclist = function
 [] -> ""
 | head::tail -> c_of_header head.header head.args ^ (c_of_block head.code) ^
 (c_of_funclist tail)

let rec c_of_simple (p:simple_program) =
 depth := 0; "#include \"strlib.h\"\n\n" ^ (c_of_func_decl_list p.fdecls) ^
 c_of_var_decl_list p.gvars ^ c_of_funclist p.funcs

Strlang Project Report 44

Parser.mly

%{ open Ast

let block_id = ref 1

let gen_block_id (u:unit) =
 let x = block_id.contents in
 block_id := x + 1; x

%}

%token LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET EOF
%token PLUS MINUS TIMES DIVIDE MOD
%token OR AND
%token LESS GREATER LESSEQUAL GREATEREQUAL EQUAL UNEQUAL NOT
%token CARET AT TILDE
%token LARROW RARROW

%token SEMI

%token STR NUM

%token <string> STR_LITERAL
%token <int> NUM_LITERAL

%token <string> ID

%nonassoc NOELSE

%right LARROW

%left OR
%left AND

/* theoretically EQUAL and UNEQUAL should have different precedence, but this breaks
other things */
%left LESS LESSEQUAL GREATER GREATEREQUAL EQUAL UNEQUAL

%left PLUS MINUS
%left TIMES DIVIDE MOD
%left TILDE

%left NEG NOT CARET
%left LBRACKET

%right AT

%start program
%type <Ast.program> program

%%

program:
 var_list func_list { { globals = List.rev $1; functions = List.rev $2; block_count
= gen_block_id ()} }

func_list:
 { [] }
 | func_list func { $2 :: $1 }

func:
 ID LPAREN formals_list_opt RPAREN RARROW var_type_opt block
 { { name = $1; ret_type = $6; body = $7; formals = $3} }

block:
 LBRACE var_list stmt_list RBRACE
 { {locals = List.rev $2; statements = $3; block_id = gen_block_id ()} }

Strlang Project Report 45

stmt_list:
 { [] }
 | stmt stmt_list { $1 :: $2 }

stmt:
 block { CodeBlock($1) }
 | expr SEMI { Expression($1) }
 | LESS expr GREATER block { Loop($2, $4) }
 | LBRACKET expr RBRACKET block NOT LBRACKET RBRACKET block { Conditional($2, $4,
$8) }
 | LBRACKET expr RBRACKET block %prec NOELSE { Conditional($2, $4, {locals = [];
statements = []; block_id = -1}) }
 | RARROW expr SEMI { Return($2) }
 | RARROW SEMI { Return(NoExpr) }

expr:
 /* binary arithmetic operators */
 expr PLUS expr { Binop($1, Plus, $3) }
 | expr MINUS expr { Binop($1, Minus, $3) }
 | expr TIMES expr { Binop($1, Times, $3) }
 | expr DIVIDE expr { Binop($1, Divide, $3) }
 | expr MOD expr { Binop($1, Mod, $3) }

 /* comparison */
 | expr LESS expr { Binop($1, Less, $3) }
 | expr GREATER expr { Binop($1, Greater, $3) }
 | expr LESSEQUAL expr { Binop($1, Leq, $3) }
 | expr GREATEREQUAL expr { Binop($1, Geq, $3) }

 | expr TILDE expr TILDE expr { Replace($1, $3, $5) }

 /* equality */
 | expr EQUAL expr { Binop($1, Eq, $3) }
 | expr UNEQUAL expr { Binop($1, Neq, $3) }

 /* logical or/and */
 | expr OR expr { Binop($1, Or, $3) }
 | expr AND expr { Binop($1, And, $3) }

 /* assignment */
 | lvalue LARROW expr { Assign($1, $3) }

 /* arithmetic and logical negation */
 | MINUS expr %prec NEG { Unop($2, Neg) }
 | NOT expr { Unop($2, Not) }

 /* length operator */
 | CARET expr { Unop($2, Len) }

 /* keys operator */
 | AT MOD expr { Unop($3, Keys) }

 /* values operator */
 | AT AT expr { Unop($3, Vals) }

 /* grouping */
 | LPAREN expr RPAREN { $2 }

 /* function call */
 | ID LPAREN actuals_list_opt RPAREN { FuncCall($1, $3) }

 /* variable */
 | lvalue { Rvalue($1) }

 /* literals */
 | STR_LITERAL { StrLiteral($1) }
 | NUM_LITERAL { NumLiteral($1) }

formals_list_opt:

Strlang Project Report 46

 formals_list { $1 }
 | CARET { [] }

formals_list:
 var { [$1] }
 | var SEMI formals_list { $1 :: $3 }

actuals_list_opt:
 { [] }
 | actuals_list { $1 }

actuals_list:
 expr { [$1] }
 | expr SEMI actuals_list { $1 :: $3 }

var_list:
 { [] }
 | var_list var SEMI { $2 :: $1 }

var:
 var_type ID { ($2, $1) }

var_type_opt:
 CARET { Simple(None) }
 | var_type {$1}

var_type:
 STR { Simple(Str) }
 | NUM { Simple(Num) }
 | MOD LBRACKET STR SEMI STR RBRACKET { Map(Str, Str) }
 | MOD LBRACKET NUM SEMI STR RBRACKET { Map(Num, Str) }
 | MOD LBRACKET STR SEMI NUM RBRACKET { Map(Str, Num) }
 | MOD LBRACKET NUM SEMI NUM RBRACKET { Map(Num, Num) }

lvalue:
 ID { ($1, NoExpr) }
 | ID LBRACKET expr RBRACKET { ($1, $3) }

Strlang Project Report 47

Scanner.mll

(* tokenize input *)

{ open Parser }

rule token = parse
[' ' '\t' '\r' '\n'] { token lexbuf }
| "//" { comment lexbuf }
| '(' { LPAREN } | ')' { RPAREN }
| '{' { LBRACE } | '}' { RBRACE }
| '[' { LBRACKET } | ']' { RBRACKET }

| '+' { PLUS } | '-' { MINUS }
| '*' { TIMES } | '/' { DIVIDE }
| '%' { MOD }

| '|' { OR } | '&' { AND }

| '<' { LESS } | '>' { GREATER }
| "<=" { LESSEQUAL } | ">=" { GREATEREQUAL }
| "==" { EQUAL } | "!=" { UNEQUAL }

| '!' { NOT } | '^' { CARET }
| '~' { TILDE } | '@' { AT}

| "<-" { LARROW } | "->" { RARROW }
| eof { EOF }

| '#' { NUM } | '$' { STR }

| ';' { SEMI }

| ['0'-'9']+ as lxm { NUM_LITERAL(int_of_string lxm) }
| '\"'[^'\"']*'\"' as lxm { STR_LITERAL(lxm) }
| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { ID(lxm) }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse
 "\n" { token lexbuf }
| _ { comment lexbuf }

Strlang Project Report 48

Simple.ml

(* simplification pass
 convert checked AST to flat intermediate representation
 -simplify expressions
 -flatten blocks
 -replace loops with labels and branches
*)

open Ast
open Check

type simple_type = Ast.var_type
type simple_var = Ast.var_decl
type simple_fdecl = Ast.func_decl

type simple_lit =
 StrLit of string
 | NumLit of int

type simple_expr =
 Bin of simple_var * Ast.bop * simple_var * simple_var (* a = b op c *)
 | Un of simple_var * Ast.uop * simple_var (* a = op b *)
 | Call of simple_var * simple_fdecl * simple_var list (* a = b(c..d..) *)
 | Lit of simple_var * simple_lit (* a = "b" *)
 | Deref of simple_var * simple_var * simple_var (* a = b[c] *)
 | Alias of simple_var * simple_var * simple_var (* a[b] = c *)

type simple_stmt =
 | Decl of simple_var
 | If of simple_var * string
 | Jmp of string
 | Label of string
 | Ret of simple_var
 | Expr of simple_expr

and simple_func = {
 args: simple_var list;
 header: simple_fdecl;
 code: simple_stmt list;
}

type simple_program = {
 gvars: simple_var list;
 fdecls: simple_fdecl list;
 funcs: simple_func list;
 blocks: int;
}

let tmp_reg_id = ref 0
let label_id = ref 0

let gen_tmp_var t =
 let x = tmp_reg_id.contents in
 let prefix = (match t with
 Simple(Str) -> "__reg_str_" | Simple(Num) -> "__reg_num_" |
 Map(_,_) -> "__reg_map_" | _ -> raise(Failure("unsupported type"))) in
 tmp_reg_id := x + 1; (prefix ^ (string_of_int x), t, -1)

let gen_tmp_label (s:unit) =
 let x = label_id.contents in
 label_id := x + 1; "__LABEL_" ^ (string_of_int x)

let is_vdecl (s:simple_stmt) =
 match s with
 Decl(_) -> true
 | _ -> false

let is_not_vdecl (s:simple_stmt) =

Strlang Project Report 49

 not (is_vdecl s)

let rec simplify_rvalue (t:simple_type) (l:c_lvalue) =
 let(decl, e) = l in
 if e = NoExpr then
 ([], decl)
 else
 let (se, r) = simplify_expr e in
 let tmp = gen_tmp_var t in
 ([Decl(tmp)] @ se @ [Expr(Deref(tmp, decl, r))], tmp)
 (* side-effects are that passing map expression always is done using a
temporary *)

and simplify_binop (t:simple_type) (e1:c_expr) (e2:c_expr) (op:bop) =
 let (se1, r1) = simplify_expr e1 in
 let (se2, r2) = simplify_expr e2 in
 let tmp = gen_tmp_var t in
 ([Decl(tmp)] @ se1 @ se2 @ [Expr(Bin(tmp, op, r1, r2))], tmp)

and simplify_unop (t:simple_type) (e1:c_expr) (op:uop) =
 let (se, r) = simplify_expr e1 in
 let tmp = gen_tmp_var t in
 ([Decl(tmp)] @ se @ [Expr(Un(tmp, op, r))], tmp)

and simplify_assign (t:simple_type) (l:c_lvalue) (e:c_expr) =
 let (se, r) = simplify_expr e in
 let (decl, l_expr) = l in
 if l_expr = NoExpr
 then (se @ [Expr(Alias(decl, ("", Simple(None), 1), r))], r)
 else
 let (le, lr) = simplify_expr l_expr in
 (se @ le @ [Expr(Alias(decl,lr,r))], r)

and simplify_call (fdecl:simple_fdecl) (el:c_expr list)
 (rl:simple_var list) (sl:simple_stmt list) =
 match el with
 [] ->
 let (_,t,_,_) = fdecl in
 let tmp = (match t with
 Simple(None) -> ("__none", t, -1) | _ -> gen_tmp_var t) in
 let c = Call(tmp, fdecl, (List.rev rl)) in (* reverse the list of
results as it was constructed right-to-left *)
 ([Decl(tmp)] @ sl @ [Expr(c)], tmp)
 | head :: tail ->
 let (se, r) = simplify_expr head in
 (* tack on the result to the list of results, the intermediate statements
to the list of statements *)
 simplify_call fdecl tail (r :: rl) (se @ sl)

and simplify_expr (e:c_expr) =
 match e with
 StrLiteral(s) ->
 let tmp = gen_tmp_var (Simple(Str)) in
 ([Decl(tmp); Expr(Lit(tmp, StrLit(s)))], tmp)
 | NumLiteral(n) ->
 let tmp = gen_tmp_var (Simple(Num)) in
 ([Decl(tmp); Expr(Lit(tmp, NumLit(n)))], tmp)
 | NoExpr ->
 ([], ("none", Simple(None), -1))
 | Rvalue(t,l) ->
 simplify_rvalue t l
 | Binop(t, e1, op, e2) ->
 simplify_binop t e1 e2 op
 | Unop(t, e1, op) ->
 simplify_unop t e1 op
 | Assign(t, l, e1) ->
 simplify_assign t l e1
 | FuncCall(fdecl, el) ->
 simplify_call fdecl el [] []

Strlang Project Report 50

let gen_default_ret (t:simple_type) =
 if t = Simple(None) then [Ret(("none", t, -1))]
 else let tmp = gen_tmp_var t in
 Decl(tmp) :: [Ret(tmp)]

let rec simplify_stmt (s:c_stmt) =
 match s with
 CodeBlock(b) -> simplify_block b
 | Conditional(e, b1, b2) ->
 let (se, r) = simplify_expr e in
 let sb1 = simplify_block b1 in
 let sb2 = simplify_block b2 in
 let startlabel = gen_tmp_label () in
 let endlabel = gen_tmp_label () in
 se @ [If(r, startlabel)] @ sb2 @ [Jmp(endlabel); Label(startlabel)] @ sb1
@ [Label(endlabel)]
 | Loop(e, b) ->
 let (se, r) = simplify_expr e in
 let sb = simplify_block b in
 let startlabel = gen_tmp_label () in
 let endlabel = gen_tmp_label () in
 [Jmp(endlabel); Label(startlabel)] @ sb @ [Label(endlabel)] @ se @ [If(r,
startlabel)]
 | Return(e) ->
 let (se, r) = simplify_expr e in
 se @ [Ret(r)]
 | Expression(e) -> (* only need simplified statements, not final tmp register *)
 let (se, r) = simplify_expr e in
 se

and simplify_stmtlist (slist:c_stmt list) =
 match slist with
 [] -> []
 | head :: tail -> simplify_stmt head @ simplify_stmtlist tail

and simplify_block (b:c_block) =
 let decls = List.map (fun e -> Decl(e)) b.c_locals in
 decls @ (simplify_stmtlist b.c_statements)

and simplify_fdecls = function
 [] -> []
 | head :: tail ->
 head.c_header :: simplify_fdecls tail

and simplify_func (f:c_func) =
 let body = simplify_block f.c_body in
 let ret_type = Check.get_ret_of_fdecl f.c_header in
 let body = body @ (gen_default_ret ret_type) in
 let vdecls = List.filter is_vdecl body in
 let stmts = List.filter is_not_vdecl body in
 {header = f.c_header; args = f.c_formals; code = vdecls @ stmts}

and simplify_funclist (flist:c_func list) =
 match flist with
 [] -> []
 | head :: tail -> simplify_func head :: simplify_funclist tail

let rec simplify_program (p:c_program) =
 { gvars = p.c_globals; fdecls = simplify_fdecls p.c_functions; funcs =
simplify_funclist p.c_functions; blocks = p.c_block_count}

Strlang Project Report 51

Strlang.ml

(* compiler driver
 - invokes each compiler pass in sequence *)

open Unix

let cpp_compiler = "g++"
let pcre_include = ""
let pcre_lib = ""
let pcre_name = "-lpcrecpp"

type action = Ast | Compile | Assemble | Help | Version

let version (n:unit) =
 "strlang version 0.1 (Green Eggs 'n Ham) 12/22/11"

let usage (name:string) =
 "usage:\n" ^ name ^ "\n" ^
 " -a file.str (dump AST of source)\n" ^
 " -c file.str [file.cpp] (compile to C++)\n" ^
 " -e file.str file.exe (compile to executable)\n" ^
 " -h (display this message)\n" ^
 " -v (display version number)\n"

let get_compiler_path (path:string) =
 try
 let i = String.rindex path '/' in
 String.sub path 0 i
 with _ -> "."

let _ =
 let action =
 if Array.length Sys.argv > 1 then
 (match Sys.argv.(1) with
 "-a" -> if Array.length Sys.argv == 3 then Ast else Help
 | "-c" ->
 if (Array.length Sys.argv == 3) ||
 (Array.length Sys.argv == 4) then Compile
else Help
 | "-e" -> if Array.length Sys.argv == 4 then Assemble else
Help
 | "-v" -> Version
 | _ -> Help)
 else Help in
 match action with
 Help -> print_endline (usage Sys.argv.(0))
 | Version -> print_endline (version ())
 | (Ast | Compile | Assemble) ->
 let input = open_in Sys.argv.(2) in
 let lexbuf = Lexing.from_channel input in
 let ast = Parser.program Scanner.token lexbuf in
 if action = Ast then print_endline (Ast.string_of_program ast)
 else
 let env = Symtab.symtab_of_program ast in
 let checked = Check.check_program ast env in
 let simple = Simple.simplify_program checked in
 let program = Output.c_of_simple simple in
 if action = Compile then
 if Array.length Sys.argv == 3 then print_endline
program
 else
 let out = open_out Sys.argv.(3) in
 output_string out program; close_out out
 else
 let outfilename = Sys.argv.(3) ^ "_strlang.cpp" in
 let out = open_out outfilename in
 output_string out program; close_out out;

Strlang Project Report 52

 execvp cpp_compiler [|cpp_compiler; pcre_include; "-
I" ^ (get_compiler_path Sys.argv.(0));
 outfilename; "-o"; Sys.argv.(3); pcre_lib;
pcre_name|]

Strlang Project Report 53

Symtab.ml

(* symbol table
 -construct symbol table from AST
 -provide functions to look up symbols in the table
*)

open Ast

module SymMap = Map.Make(String)
let scope_parents = Array.create 1000 0

let string_of_symtab env =
 let symlist = SymMap.fold
 (fun s t prefix -> (string_of_decl t) :: prefix) (fst env) [] in
 let sorted = List.sort Pervasives.compare symlist in
 String.concat "\n" sorted

let rec symtab_find (name:string) env =
 let(tab, scope) = env in
 let to_find = name ^ "_" ^ (string_of_int scope) in
 if SymMap.mem to_find tab then SymMap.find to_find tab
 else
 if scope = 0 then raise (Failure("symbol " ^ name ^ " not declared in
current scope"))
 else symtab_find name (tab, scope_parents.(scope))

let rec symtab_add_decl (name:string) (decl:decl) env =
 let (tab, scope) = env in
 let to_find = name ^ "_" ^ (string_of_int scope) in
 if SymMap.mem to_find tab
 then raise(Failure("symbol " ^ name ^ " declared twice in same scope"))
 else ((SymMap.add to_find decl tab), scope)

(* add list of variables to the symbol table *)
let rec symtab_add_vars (vars:var list) env =
 match vars with
 [] -> env
 | (name,t) :: tail -> let env = symtab_add_decl name (VarDecl(name, t, snd env))
env in
 symtab_add_vars tail env

(* add declarations inside statements to the symbol table *)
let rec symtab_add_stmts (stmts:stmt list) env =
 match stmts with
 [] -> env
 | head :: tail -> let env = (match head with
 CodeBlock(b) -> symtab_add_block b env
 | Loop(e, b) -> symtab_add_block b env
 | Conditional(e, b1, b2) -> let env = symtab_add_block b1 env in
 symtab_add_block b2 env
 | _ -> env) in symtab_add_stmts tail env

and symtab_add_block (b:block) env =
 if(b.block_id != -1) then
 let (tab, scope) = env in
 let env = symtab_add_vars b.locals (tab, b.block_id) in
 let env = symtab_add_stmts b.statements env in
 scope_parents.(b.block_id) <- scope; ((fst env), scope)
 else env

and symtab_add_func (f:func) env =
 let scope = snd env in
 let args = List.map snd f.formals in
 let env = symtab_add_decl f.name (FuncDecl(f.name, f.ret_type, args, scope)) env
in
 let env = symtab_add_vars f.formals ((fst env), f.body.block_id) in
 symtab_add_block f.body ((fst env), scope)

Strlang Project Report 54

(* add list of functions to the symbol table *)
and symtab_add_funcs (funcs:func list) env =
 match funcs with
 [] -> env
 | head :: tail -> let env = symtab_add_func head env in
 symtab_add_funcs tail env

(* add builtin functions to the symbol table *)
let add_builtins env =
 let env = symtab_add_decl "read" (FuncDecl("read", Simple(Str), [], 0)) env in
 let env = symtab_add_decl "end_input" (FuncDecl("end_input", Simple(Num), [], 0))
env in
 let env = symtab_add_decl "write" (FuncDecl("write", Simple(None), [Simple(Str)],
0)) env in
 let env = symtab_add_decl "to_string" (FuncDecl("to_string", Simple(Str),
[Simple(Num)], 0)) env in
 let env = symtab_add_decl "to_num" (FuncDecl("to_num", Simple(Num), [Simple(Str)],
0)) env in
 let env = symtab_add_decl "open" (FuncDecl("open", Simple(None), [Simple(Str);
Simple(Str)], 0)) env in
 symtab_add_decl "exit" (FuncDecl("exit", Simple(None), [Simple(Num)], 0)) env

let symtab_of_program (p:Ast.program) =
 let env = add_builtins(SymMap.empty, 0) in
 let env = symtab_add_vars p.globals env in
 symtab_add_funcs p.functions env

Strlang Project Report 55

Strlib.h

/*
** wrappers used by strlang for manipulating string and map data-types
** implementations for builtin functions
*/

#ifndef __strlib_h
#define __strlib_h

#include <cstdio>
#include <string>
#include <map>
#include <pcrecpp.h>

using namespace std;

FILE *__in = stdin;
FILE *__out = stdout;

void write(const string &s) { fprintf(__out, "%s", s.c_str()); }

string read(void)
{
 char buffer[512];
 int len;

 fgets(buffer, 512, __in);
 len = strlen(buffer);

 if(buffer[len - 1] == '\n') buffer[len - 1] = '\0';

 else fprintf(stderr, "library error: read\n");

 return string(buffer);
}

int end_input(void) { return (__in == stdin) ? 0 : feof(__in); }

string to_string(const int n)
{
 char buf[20];
 sprintf(buf, "%d", n);
 return string(buf);
}

int to_num(const string &s)
{
 char *end;
 int i = strtol(s.c_str(), &end, 10);

 if(*end) fprintf(stderr, "library error: to_int\n");

 return i;
}

void open(const string &inout, const string &file)
{
 if(strcmp(inout.c_str(), "in") == 0)
 {
 if(__in != stdin) fclose(__in);

 if(file == "stdin") __in = stdin;

 else if(!(__in = fopen(file.c_str(), "r")))
 {
 fprintf(stderr, "library error: open(\"in\", %s)\n", file.c_str());
 __in = stdin;
 }

Strlang Project Report 56

 }

 else if(strcmp(inout.c_str(), "out") == 0)
 {
 if(__out != stderr && __out != stdout) fclose(__out);

 if(file == "stdout") __out = stdout;

 else if(!(__out = fopen(file.c_str(), "a")))
 {
 fprintf(stderr, "library error: open(\"out\", %s)\n",
file.c_str());
 __out = stdout;
 }
 }

 else fprintf(stderr, "library error: invalid argument to open: %s\n",
inout.c_str());
}

int __str_len(const string &s)
{
 return s.size();
}

string __str_substr(const string &s, const int i)
{
 if(i >= 0) return s.substr(i);
 else return s.substr(0, -i);
}

string __str_replace(const string orig, const string &search, const string &replace)
{
 string out(orig);
 pcrecpp::RE(search).GlobalReplace(replace, &out);
 return out;
}

string __str_match(const string orig, const string &search)
{
 string out;
 pcrecpp::RE("(" + search + ")").PartialMatch(orig, &out);
 return out;
}

int __str_index(const string &orig, string &search)
{
 string tmp = __str_match(orig, search);
 return ((tmp != "") ? orig.find(tmp) : -1);
}

int __str_less(const string &l, const string &r) { return (l < r) ? 1 : 0; }
int __str_greater(const string &l, const string &r) { return (l > r) ? 1 : 0; }
int __str_lessequal(const string &l, const string &r) { return (l <= r) ? 1 : 0; }
int __str_greaterequal(const string &l, const string &r) { return (l >= r) ? 1 : 0; }
int __str_equal(const string &l, const string &r) { return (l == r) ? 1 : 0; }
int __str_notequal(const string &l, const string &r) { return (l != r) ? 1 : 0; }

template <class key, class val>
map<key, val> __map_empty(map<key, val> &m) { m.clear(); return m; }

template <class key, class val>
int __map_equal(const map<key, val> &l, const map<key, val> &r) { return (l == r) ? 1 :
0; }

template <class key, class val>
int __map_notequal(const map<key, val> &l, const map<key, val> &r) { return (l != r) ? 1
: 0; }

Strlang Project Report 57

string __str_concat(const string &l, string &r) { return l + r; }

template <class key, class val>
val __map_remove(map<key, val> &m, const key &k) { val v = m[k]; m.erase(k); return v; }

template <class key, class val>
int __map_exists(map<key, val> &m, const key &k)
{
 typename map<key, val>::iterator it = m.find(k);
 return (it != m.end());
}

template <class key, class val>
map<int, key> __map_keys(map<key, val> &m)
{
 int i = 0;
 map<int, key> k;
 for(typename map<key, val>::const_iterator it = m.begin(); it != m.end(); ++it)
 {
 k[i] = it->first;
 i++;
 }
 return k;
}

template <class key, class val>
map<int, val> __map_vals(map<key, val> &m)
{
 int i = 0;
 map<int, val> v;
 for(typename map<key, val>::const_iterator it = m.begin(); it != m.end(); ++it)
 {
 v[i] = it->second;
 i++;
 }
 return v;
}

template <class key, class val>
int __map_len(const map<key, val> &m)
{
 return m.size();
}

#endif

