
YAPPL
Yet Another Probabilisitic
Programming Language

David Hu
Jonathan Huggins

Hans Hyttinen
Harley McGrew

Columbia University

December, 2011

Hu, Huggins, Hyttinen, & McGrew YAPPL



Overview: Introduction

Inspiration: functional, probabilistic programming languages

Church: PPL based on pure subset of Scheme

HANSEI: PPL based on Ocaml

OCaml: inspiration for syntax

Church and HANSEI code can be difficult to read and understand

Hu, Huggins, Hyttinen, & McGrew YAPPL



Overview: Probabilistic Programming

What is probabilistic programming about?

allows for the concise definition of complex statistical models

in particular, we are interested in defining generative
Bayesian models and conditionally sampling from them

to accomplish these goals, use conditional evaluation and
memoization

a memoized function remembers what value it returned for
previously evaluated argument values and always returns the
same value in the future given those arguments

memoization is useful because it lets you have ”infinite”
things (like lists or matrices), but only lazily generate items
from the list

Hu, Huggins, Hyttinen, & McGrew YAPPL



Overview: Goals

Improving on HANSEI and Church by...

implementing a functional, natively probabilistic programming
language with modern, Ocaml-like syntax

build conditional evaluation and memoization directly into the
language

making syntax cleaner and more readable

Hu, Huggins, Hyttinen, & McGrew YAPPL



Tutorial 1

tutorials/add.ypl

fun int:add int:a int:b =
a + b

in

~print_line ~add 1 2

Hu, Huggins, Hyttinen, & McGrew YAPPL



Tutorial 2

tutorials/geom cond.ypl

~seed;
fun int:geom float:q =
fun int:geom_helper float:orig_q int:i =

if ~rand < orig_q then i
else ~geom_helper orig_q (i+1)

in

~geom_helper q 1
in

Hu, Huggins, Hyttinen, & McGrew YAPPL



Tutorial 3

fun int:try_g = ~geom 0.1 given $ > 100 in

~print_line ~try_g;

~print_line ~try_g;

~print_line ~try_g;

~print_line ~try_g;

~print_line ~try_g;

fun int:try_g2 = ~geom 0.1 given $ > 10 in

~print_line ~try_g2;

~print_line ~try_g2;

~print_line ~try_g2;

~print_line ~try_g2;

~print_line ~try_g2

Hu, Huggins, Hyttinen, & McGrew YAPPL



Block Diagram

Hu, Huggins, Hyttinen, & McGrew YAPPL



YAPPL code conversion to AST

fun int:t1 int:a =
a + 3

in
~print_line ~t1 2

Hu, Huggins, Hyttinen, & McGrew YAPPL



YAPPL code conversion to AST

FuncBindings
FuncBind =

FuncDecl(t1, ValType(Int), Decl(a, ValType(Int))
Binop +

Id a
IntLit 3

Eval print_line
Eval t1

IntLit 2
Noexpr

Noexpr

Hu, Huggins, Hyttinen, & McGrew YAPPL



Code Generation

Important steps

Generate symbol table

tracks identifiers and type
can point to parent symbol table for scoping

expr to string

main function for evaluation of ast
resolves reserved identifiers before using symtable

Compile OCaml to executable

links with builtin (includes functions like rand)

Hu, Huggins, Hyttinen, & McGrew YAPPL



Summary

Yet Another Probabilisitic Programming Language, but

Cleaner syntax
Built-in constructs: memoization, conditionals

.ypl → translation → .ml → execution

Condensed: ./yapplc program.ypl ; ./program

Hu, Huggins, Hyttinen, & McGrew YAPPL



Summary

Lessons learned

Start early

Parallelize work structure

Project scope

Big: potential to do cool stuff
Small: it will probably actually work

Unit testing

Learn debug tools

OCAMLRUNPARAMS
ocamlyacc -v

Hu, Huggins, Hyttinen, & McGrew YAPPL


