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Section 1: Introduction 

1.1 Project Overview 
The language we have designed is an L-system based fractal drawing language.  L-

systems use a variant of context-free grammars to generate fractals and other iterative 
sequences.  Our language is translated from a set of rules to turtle graphics procedures in Java, 
which will in turn be directly used to display the iterative sequence specified on screen.  The 
language is intended to allow users to quickly model and visualize L-systems on-screen. 

Thus, using our language, it will be very easy for a user familiar with L-system grammars 

to code and draw an L-system in our language, as the logistical details of creating a window and 

actually drawing the L-system will be automatically handled once the source program is 

compiled. 

Ideally, we would like to minimize the amount of parsing required from a given program. 

 As such, we have Java classes that provide drawing and computational functionality that would 

execute alongside the outputted code from our compiler.  This standard library is added into each 

program file when it is compiled into a Java file.  The net result is a programming language that 

is accessible to mathematicians having little familiarity with programming. 

1.2 Background 
L-systems, short for Lindenmayer Systems, are a type of formal grammar.  An L-system 

consists of an alphabet of symbols, an initial sequence of symbols (a string) used to begin a 

construction, a set of production rules that expand individual symbols into strings, and a set of 

rules that match terminal symbols to drawing functions in order to translate generated strings into 

geometric structures.  To construct an L-system, the production rules are iteratively applied, 

starting from the initial string.  In each iteration all rules are applied in parallel. 

More formally, an L-system is defined as a tuple: 

G = (V, w, P) 

…where, V is the alphabet, the set of symbols containing variables, or replaceable elements; 
w is the start or axiom, the string consisting of symbols from V, representing the initial state of 
the system. P is the set of production rules that define how variables can be replaced by 
combinations of constants and other variables.  A given production rule takes the form p → s, 
where p and s are both strings.  For any symbol X in V which does not appear as p in a 
production rule in P, the rule X→ X is assumed, and X is defined as a constant or terminal 
symbol. 
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An example L-system representing the Koch Curve follows: 

variables : F 

constants : + − 

start  : F 

rules  : (F → F+F−F−F+F) 

F translates to “draw forward”, + translates to “turn left 90 degrees”, and - translates to “turn 
right 90 degrees” 
Example iterative expansions, where n is the number of iterations to carry out: 

n = 0: 
F 
n = 1: 
F+F-F-F+F 
n = 2: 
F+F−F−F+F + F+F−F−F+F − F+F−F−F+F − F+F−F−F+F + F+F−F−F+F 
n = 3: 
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F + 
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F − 
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F − 
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F + 
F+F−F−F+F+F+F−F−F+F−F+F−F−F+F−F+F−F−F+F+F+F−F−F+F 

1.3 Related Work 
There are a number of L-system generator applications available online.  They range 

from applications that create modeling scripts that are used to generate 3-D L-system models in 
applications like Maya or 3D Studio MAX, to applets that allow for users to input the number of 
iterations, a single angle degree value, an initial state, and production rules for a single L-system 
that is then drawn in the browser.  A particularly popular L-system generator application is the 
L-Systems Explorer, available at http://www.generation5.org/content/2002/lse.asp.  It allows 
the user to enter in rules, the number of iterations, an angle value, and a draw distance value. 
 LPFG is a programming language (detailed at http://algorithmicbotany.org/lstudio/LPFGman.pdf) that 
allows users to create L-systems, and is based around a C++ and OpenGL environment. 

Our L-system language aims to provide the customizability possible only through a full 
programming language while remaining syntactically intuitive enough to allow users to quickly 
and easily create and model L-systems. 

  

http://algorithmicbotany.org/lstudio/LPFGman.pdf
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1.4 Goals of the language 
Our L-System language aims to be customizable, intuitive, and portable.  It serves as a 

simple and powerful means of creating and modeling L-systems. 

1.4.1 Customizable 

Most L-system applications only allow for users to specify fields in an L-system 
structure- the fields consisting of the system’s production rules, initial state, number of 
iterations, and an angle value.  In our language, it is possible for users to map multiple terminals 
to different angle values (e.g. z = turn(20) and y = turn(40)) and to different draw distances (e.g. 
z = forward(30) and y = forward(15)).  There is a higher level of customizability that comes from 
creating a programming language instead of an application- users can determine their own 
parameters instead of merely filling in blanks in a pre-set structure. 

1.4.2 Intuitive 

Our language has a syntax that is very similar to Java’s syntax.  The syntax for creating L-
system drawing methods is very easy to grasp if the user is familiar with constructing an L-
system grammar.  Users can easily create and model L-systems without needing to deal with 
creating a GUI window, instantiating a panel, creating a drawing class, and so on.  A perfectly 
valid program can have an L-system drawing method and a line in the main method that calls 
the drawing method.  As long as a user is familiar with L-systems and their underlying structure, 
they will be able to use our language to create and model L-systems. 

1.4.3 Portable 

The L-system language only requires that the user have the Java Development Kit and 
the Java Runtime Environment on their machine, in order to compile compiled L-system 
programs from their intermediate Java source code states into class files and to execute those 
class files.  The compiler takes in L-system input files and outputs Java source code.  In essence, 
the language can be used on any machine that has a Java compiler on it. 
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Section 2: Language Tutorial 

2.1 Getting Started with the Compiler 

2.1.1 Compiler Requirements 

 The LSystem compiler can generate intermediate Java source code without the Java 
compiler installed. In order for the LSystem compiler to create a runnable program a Java 
compiler of at least version 1.6 needs to be available in the path of the user compiling the 
LSystem program. The Java compiler is packaged with the Java Development Kit (JDK). To run a 
compiled LSystem program the Java Run-time Environment (JRE) must be installed. 

2.1.2 Installing the Compiler 

 The LSystem language compiler needs to be copied into a directory that is in your path 
environment variable, such as /usr/bin/. To check if the compiler is accessible from the 
command line after you have copied it simply attempt to run it, as in Figure 2.1.2.1. Usage 
instructions will be displayed if the compiler is accessible, with an “InvalidArgument” warning 
message. 

$ lsystem 

InvalidArgument 

 Usage: lsystem [-a|-s|-c] SOURCE_FILE [-t|-v] 

Figure 2.1.2.1 – Get Compiler Usage Instructions 

2.2 A First Example: The Hilbert Curve 

2.2.1 The Main Function 

Every LSystem program has a main function. This function serves as a main entry point 
into the application, as shown in figure 2.2.1.1. 

def compute main() 

{    

} 

Figure 2.2.1.1 – Get Compiler Usage Instructions 
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2.2.2 The Draw Function 

As the name implies, draw functions draw images. These types of functions define an L-
system, which is essentially a list of rules that are used to generate an image. What this means 
will become clearer as you progress through the tutorial. 

We will start with an explanation of the draw function signature. Draw functions always 
have the same function signature, with the exception of the name of the function which can be 
different. The def keyword indicates that a function is being defined. The draw keyword 
indicates that the function is a draw function, i.e. that it will contain an L-system. The name of 
the particular draw function given below is hilbertCurve. The level argument passed into the 
hilbertCurve function refers to the number of times the L-system rule set is applied. 

def draw hilbertCurve(int level) 

Figure 2.2.2.1 – Draw Function Signature 

When the name of a rule sequence (e.g. A or B in the example below) is encountered on 
the right hand side of the rule, the rule sequence is reapplied. The maximum depth of this 
recursive process is the value passed in for the level argument. 

In the example L-system rule set, the l constant means "turn left" by 90 degrees, and r 
constant means "turn right" by negative 90 degrees. In terms of the underlying drawing system, 
the turn radius refers to the degree by which the drawing cursor turns when an l or r constant is 
encountered. The f constant means “draw forward" by some integer increment. 

alphabet:  (A,B);                  # The rules in the l-system. 

rules:{ 

  lambda -> A;                     # The first rule to call. 

  A  ->  l B f r A f A r f B l;    # the A rule sequence 

  B  ->  r A f l B f B l f A r;    # the B rule sequence 

  f = forward(1); 

  r = turn(-90); 

  l = turn(90); 

} 

Figure 2.2.2.2 – Example L-system Alphabet and Rule Set 

Combining these concepts together we get a program that draws a Hilbert curve, i.e. the 
“Hello, World” program of the LSystem language. The image that this program produces is 
shown in the next section, after the full program is compiled. 
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def draw hilbertCurve (int level){ 

  alphabet: (A,B); 

  rules: { 

    lambda -> A; 

    A  ->  l B f r A f A r f B l; 

    B  ->  r A f l B f B l f A r; 

    f = forward(1); 

    r = turn(-90); 

    l = turn(90); 

  } 

} 

 

def compute main() 

{    

  hilbertCurve(5);     

} 

Figure 2.2.2.3 – Hilbert Curve Code 

2.2.3 Compiling the Hilbert Program 

The output of the program will be a file called “hilbert.class” that contains the Java 
bytecode representation of the LSystem program. Follow the following steps to compile the 
Hilbert example program.  

1. Create a text file called “hilbert.ls” (sans quotes).  
2. Open the text file with your favorite text editor. 
3. Copy the example program into the file, then save the file. 
4. Enter the following command into the command line. 

 

$ lsystem -c hilbert.ls 

 

Figure 2.2.3.1 – Hilbert Compilation Command  
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2.2.4 Running the Hilbert Program 

 The LSystem language compiles to a Java program. To run the example program, you 
will need to have the Java JRE installed. After compiling the Hilbert example program, to run 
the Java program enter the following command. 

$ java Hilbert 

Figure 2.2.4.1 – Hilbert Run Command  

 

Figure 2.2.4.2 – The Running Hilbert Program  

2.3 Additional Examples 

 This section includes additional drawing examples, with notes that explain why they are 
interesting. An image of the running program is included, without the text printing area. The 
code for each program is also included. 

2.3.1 Dragon Curve 

 The code for the dragon curve example, shown in figure 2.3.1.1, is very similar in format 
to the Hilbert curve code, shown in figure 2.2.2.3. The difference of interest is that the dragon 
curve example has a different L-system. The other change, the draw function being called 
“dragonCurve” instead of “hilbertCurve,” is irrelevant to the output of the program.  

There are two interesting concepts to note about this example: rules are not reflections 
of each other as in the Hilbert curve example, in fact the Z rule is only used once, and there are 
no drawing constants defined. Though self-similar, the dragon curve is not symmetrical like the 
Hilbert curve. This is due to the rules not being symmetrical. The l, r, and f drawing constants, 
when not explicitly defined, have default values of turn(90), turn(-90), and forward(1), 
respectively. 
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def draw dragonCurve(int level){ 

    alphabet:  (X,Y,Z); 

    rules:{ 

        lambda -> Z; 

        Z -> f X; 

        X -> X l Y f; 

        Y -> f X r Y; 

    } 

} 

 

def compute main(){  

 dragonCurve(12); 

} 

 

Figure 2.3.1.1 – Dragon Curve Code 

 

 

Figure 2.3.1.2 – Dragon Curve Program 
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2.3.2 Hilbert Curve Derivation 

 The Hilbert curve derivation is a fractal created by Ethan Hann. The L-system rules that 
define it, shown in figure 2.3.2.1, are similar to the Hilbert curve, hence the name “Hilbert 
Derivation.” It demonstrates that with those few rule changes, and the angle of the turn 
constants changed to 80 degrees, a very different fractal is created, as shown in figure 2.3.2.2.  

 

def draw hilbertDerivation(int level){ 

    alphabet:  (A,B); 

    rules:{ 

        lambda -> A;      

        A  ->  l B f r A f A r f B l;  

        B  ->  r C f l B f B l f C r;  

        C  ->  l D f r C f C r f D l; 

        D  ->  r A f l D f D l f A r;   

        l = turn(-80); 

        r = turn(80); 

    } 

} 

 

def compute main() 

{    

    hilbertDerivation(7); 

} 

 

Figure 2.3.2.1 – Hilbert Curve Derivation Code 

 

Figure 2.3.2.2 – Hilbert Curve Derivation Code 
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2.3.3 Koch Curve 

 The interesting thing about the Koch curve example, shown in figure 2.3.3.1, is that its L-
system contains only one rule. The LSystem language is extremely powerful in that a small 
amount of code can produce a very complex image. This is due to the language providing an 
almost identical representation of the mathematical notation for L-systems in its syntax. 

 

def draw kochCurve(int level){ 

    alphabet:  (X,f,r,l); 

    rules:{ 

        lambda -> X;    

        X -> f X l f X r f X r f X l f X; 

    } 

} 

 

def compute main(){  

 kochCurve(5); 

} 

 

Figure 2.3.3.1 – Koch Curve Code 

 

 

Figure 2.3.1.2 – Koch Curve Program 
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2.3.4 Lévy C Curve 

 At high levels of recursion, i.e. setting the level argument to greater than 20, the Lévy C 
curve program shown in figure 2.3.3.1, compiles correctly, but it crashes the Java virtual 
machine. The Lévy C curve is very ornate and requires a lot of heap memory. This highlights a 
very important limitation of the LSystem compiler: LSystem programs can easily reach 
hardware limits. 

 

def draw levycCurve(int level){ 

    alphabet:  (X); 

    rules:{ 

        lambda -> X; 

        X -> r f X l l f X r; 

        l = turn(-45); 

        r = turn(45); 

    } 

} 

 

def compute main(){  

 levycCurve(20); 

} 

  

Figure 2.3.3.1 – Lévy C Curve Code 

 

Figure 2.3.1.2 – Lévy C Curve Program 
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2.3.5 Sierpinski Triangle and Derivation 

 Changing the value of the forward constant to something other than 1 can have 
interesting effects on the programs output. The L-system shown in the Sierpinski triangle 
example, figure 2.3.5.1, is identical to those of the Sierpinski derivation L-system (not shown), 
except that the A forward rule has a value of -1 and the B forward rule has a value of -10. The 
image generated by the Sierpinski derivation, figure 2.3.5.2, is a horizontal reflection of the 
original, figure 2.3.5.1, due to the sign being flipped. Also, some of the inner triangles are 
smaller in the derivation due to the A and B rules not having the same value. 

 Notice that the f constant is not used. It is not needed as the A and B rules serve a dual 
role: rule and constant. This feature was added to the language to make rule sets even more 
flexible. This feature allows for rules to not merely inform the shape of the generated fractal, as 
with the other examples, but they are directly responsible for creating it. 

 

def draw sierpinskiDerivation(int level){ 

    alphabet:  (A,B); 

    rules:{ 

        lambda -> A; 

        A -> B l A l B; 

        B -> A r B r A; 

        A = forward(-1); 

        B = forward(-10); 

        l = turn(-60); 

        r = turn(60); 

    } 

} 

 

def compute main(){  

 sierpinskiDerivation(8); 

} 

 

Figure 2.3.5.1 – Sierpinski Derivation Code 
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Figure 2.3.5.2 – Sierpinski Triangle Program 

 

Figure 2.3.5.3 –Sierpinski Derivation Program 
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Section 3: Language Manual 

3.1 Program Definition 
A program in our language is made up of statements which consist of function 

declarations, function implementations and expression statements. A program in our language 
is to be written in a single source file, and combining different source files is not currently 
supported. Thus, the structure of the program in the source file is as follows: 

<<function declarations and implementations in source file>> 
 

That is both function declaration and implementation happen at the same time. Also 
note that one of the function declarations must be a main compute function as this is the 
function that serves as the entry point of the program.  

Currently, it is not possible to pass in user supplied command-line level arguments and 
so the main function should have the following signature: 

 

def compute main()  

{ 

 

} 

 

Also, any user defined functions that are used must have been previously declared at 
the time of use. It is illegal to refer to functions that have not yet been declared and 
implemented even if their implementation comes on later. An example of a simple program is 
given below:  

def compute sqrt(double x){ # computes square root of x 

 x = x^(0.5);  

 return x;  

} 

 

def compute main() { # main function 

  double x = 25;  

  double root = 0;  

  root = sqrt(25); 

  print(root);  

} 
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3.2 Lexical Conventions 

3.2.1 Comments 

Comments are single-line and are prefaced by the # symbol. Comments are in effect 
until the end of the line.  

 

 

#This is a comment. 

 

def draw hilbert(double s) #This is also a comment 

 

3.2.2 Identifiers 

An identifier is a sequence of letters, numbers and underscores (_) in which the first 
character is not a number.  An identifier can consist of both upper and lower case letters.  The 
language is case-sensitive and as such will differentiate identifiers with identical letters but 
have different cases.  

3.2.3 Keywords 

The following terms are a list of reserved keywords and built-in functions in the 
language and cannot be used for any other purpose: 

Reserved Words Functions 
alphabet 

boolean 

compute 

def 

double 

else 

false 

if 

int 

lambda 

print 

return 

rules 

string 

true 

while 

print 

forward 

turn 

up  

down 

setX 

setY 

 

3.2.4 Constants and literals 

Our language provides functionality for literals (also known as constants) of type int, 
double, string, and boolean.  If any of these literals are assigned to a variable, that variable’s 
declared type must match up with the literal’s type - no automatic conversion will occur except 
in the case of up-converting from an int to a double. 
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Integer constants 

An integer constant consists of a sequence of numbers without a decimal point.  In the 
example below 45 is the integer constant.  We do not provide support for octal or hexadecimal 
representation of integers. 

 

int x = 45; 

 

 

String constants 

A string constant is enclosed in double quotation marks, such as “x”.  We provide 
support for the following escape sequences within string constants: 

Character name Escape sequence 

Newline \n 

Horizontal tab \t 

Double quotation marks \” 

Backslash \\ 

 

As such, examples of the use of string constants include: 

 

string s = "string\n"; 

print("|column 1 \t column 2 \t column 3 \t |\n"); 

 

 
Note that string concatenation is currently not natively supported in our language. 
 

Double-precision floating point constants 

A double constant consists of a sequence of numbers and a decimal point.  At least one 
number must appear before the decimal point.  Examples of valid double constants include: 

 

 

0.345 

0.0 

1.0793211 

3.141592654 
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…but do not include sequences like: 
 

.314 

.010 

0.0.0 

..0 

.02.2 

2..9 

 

 

Floating numbers can also be written in the standard scientific form using e notation. 
For example 6.023e23 is a valid floating constant.  

Boolean constants 

Boolean constants consist of the keywords true and false.  A valid example of their use is: 

 

boolean b = true; 

if(b==true) 

{ 

#code 

} 

 

3.2.5 Operators 
An operator is a symbol that denotes a specific operation that is to be performed. Below is a list 

of operators supported:  

Symbol Explanation 

+  Performs addition operation 

- Performs subtraction operation 

* Performs multiplication operation 

^  Performs exponeniation 

/ Performs division operation 

=  Performs value assignment 
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3.2.6 Punctuators 

A punctuator is a symbol that does not specify a specific operation to be performed. A 
punctuator is primarily used in formatting code and so it does have a special meaning (i.e. 
significance). A punctuator can be only one of the symbols below: 

Symbol Explanation 

:  Used in defining a section in a draw function 

; Statement terminator 

{ } Used for grouping code, example in function declarations.  

3.3 Meaning of Identifiers 

3.3.1 Scoping 

The region of a program in which a certain identifier is visible and thus accessible, is 
called its scope. The scoping in our language is local only and no global scope exists. That is, all 
identifiers declared are visible only in that specific function and nowhere else. Also, identifiers 
become visible only after being declared and thus, it is illegal to refer to identifiers that have 
not yet been declared. For example, the following is not allowed and the compiler will produce 
error messages in such cases: 

 

int foo = 5;  

int bar = 10;  

int x = 25;  

int sum = 0; 

sum = foo + bar + x + y;  # This is illegal. You cannot access  undeclared 

value y.  

int y = 15; 
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Function Scope 

Similar to the scoping of identifiers, you cannot refer to a function that has not yet been 
seen. For example:  

 

def compute sqrt(double x) { 

  ... 

} 

 

def compute twice_square_root(double x) { 

  double root = 0;  

  root =  sqrt(x); 

  # This is illegal. Add(…) must be declared before it’s used. 

  return add(root, root); 

} 

 

def compute add(double x, double y){ 

 ... 

} 

 

3.3.2 Object types 

Our language supports only the following four fundamental types of objects: 

1. integers 
2. floating point numbers 
3. strings 
4. booleans 

 

Character Types  

The only supported character type is the string type. This can store a string of potentially 
unlimited length and does not have an upper bound limit. The length is only limited by the 
amount of computing resources (such as memory) available.  

Integer and Floating Point types 

The only supported integer type is int which can store 32-bits worth of data and the only 
supported floating point type is double which can store 64-bits of data.  Both of these data 
types are signed. 

Boolean Type 

This data type is essentially a truth value and can only store a single bit of information. 
Specifically, it may only take a value of either “true” or “false”.  
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3.4 Type Conversions 

3.4.1 Conversion from int to double 

Integer typed variables (also known as ints) can be converted into double-typed 
variables with automatic casting.  Note that the reverse operation is not  (and cannot be) 
performed as this can potentially result in a loss of information. The way to invoke this 
automated conversion is simply like so:  

 

int x = 45; 

double y = x; # convert x from int type to double type 

 

 

Note that the converted variable must have a different identifying name than the 
original variable. So writing the following will cause an error: 

 

int x = 45; 

double x =  x; 

 

 

The automated conversion from int to double is the only type of casting that is 
permitted and specifically it is not possible to manually convert any one data type to another. 
For example, the following will cause an error: 

 

double x = 45.0; 

int y = (int) x; 
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3.5 Expressions and Operators 

3.5.1 Precedence and Associativity Rules 

 The language follows classical mathematical order of operations, prioritizing 
multiplication and division over addition and subtraction.  The logical AND operator takes 
precedence over the logical OR operator.  Also, expressions inside parentheses have top 
precedence and are therefore evaluated first.  

 

Expression Results Comments 

3 + 2 * 6 15 Multiplication occurs before addition 

3 + (2 * 6) 15 Expression within parentheses is evaluated first, though 
the answer doesn’t change from the above expression 

(3+2) * 6 30 Expression within parentheses is evaluated first 

FALSE || TRUE && FALSE FALSE The logical AND operator takes precedence over the 
logical OR operator. 

(FALSE || TRUE) && TRUE TRUE The expression within the parentheses is evaluated first. 

FALSE || (TRUE && FALSE) FALSE The expression within the parentheses is evaluated first. 
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The following table is a list of operator precedence and associativity for our 
computational functions, adapted from the C language reference manual. 

Tokens (from high to low priority) Operators Class Associativity 

Identifiers, constants, string literal, 
parenthesized expression 

Primary expression Primary  

() Function calls Postfix L-R 

^ Exponentiation Binary R-L 

* / Multiplicative Binary L-R 

+ - Additive Binary L-R 

< <= >= > Relational 
comparisons 

Binary L-R 

== != Equality 
comparisons 

Binary L-R 

&& Logical AND Binary L-R 

|| Logical OR Binary L-R 

= Assignment Binary R-L 

, Comma Binary L-R 

3.5.2 Primary expressions 
Identifiers 

An identifier refers to either a variable or a function.  An example is int x or def 

draw hilbert, where x and hilbert are the respective identifiers. 

Constants 

A constant’s type is defined by its form and value.  See section 2d for examples of the 
use of constants. 

String literal 
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String literals are translated directly to Java strings by our compiler, and are treated 
accordingly. 

Parenthesized expressions 

A parenthesized expression’s type and value are equal to those of the un-parenthesized 
expression.  The presence of parentheses is used to identify an expression’s precedence and its 
evaluation priority. 

3.5.3 Function calls 

Our language supports two kinds of functions: Compute Functions and Drawing 
Functions. To be able to call a function, it must have been declared and implemented before. 
That is, it is a syntax error to call a function which has not yet been seen by the compiler. Also, 
recursive function calls are not supported at the moment.  

The call to a compute function must match and agree with the signature of a previously 
declared compute function. The syntax of a compute function call is: 

def compute Function_Name(Argument_Parameter_List); 

 
The grammar for the compute function call, where here identifier refers to the name of 

a user-defined function, is:  
 

identifier  (argument-expression-list) 
argument-expression-list:  argument-expression 
    argument-expression-list, argument-expression 
 
 

Example :  

Assume there is a compute function with the signature below: 

def compute sum(int a, int b) { … } 
 

It can be called like so: 

sum(1,3); 

On the other hand, the drawing function can only take a single parameter that is an integer. 

Example:  

Assume there is a draw function with the signature below: 

def draw DragonCurve (int level) {...} 
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It must be called like so:  
 

DragonCurve(10); 

The purpose of a draw function is to paint an L-System onscreen. All draw functions take 
a single integer parameter which describes how many times the L-system rules will be applied 
in painting the system.  

The grammar for the draw function call is:  

identifier  (argument-expression) 

 

Note, that the argument-expression here should be exactly a single integer. The 
semantic analysis section of the compiler will check this and compilation will fail if that actual 
parameter is not an integer.  

3.5.4 Arithmetic operators 

Arithmetic operators involve manipulating arithmetic expressions. The grammar that 
defines what is an arithmetic expression is given below:  

arithmetic expression :  NumberLiteral 

    VariableIdentifier 

 

The operators * (multiply), / (divide) are what we call multiplicative operators and they 
group from left to right.  The ^ operator is also part of this group but it is right-associative. 
These operators form what we call multiplicative expressions.  

The grammar for these expressions is: 
multiplicative expression :  arithmetic expression 

    multiplicative-expression * arithmetic expression 

    multiplicative-expression / arithmetic expression 

    multiplicative-expression ^ arithmetic expression 

 

The * operator performs arithmetic multiplication and its operands must have 
arithmetic type (i.e. be numbers of either type int or double) 

The ^ operator performs arithmetic exponentiation and thus its operands must have 
arithmetic type of either int or double. The result of this operation is a double.  

The / operator performs arithmetic division and its operands must also have arithmetic 
type.The result of this operation is similar to the type of the operands. E.g. if both the operands 
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are integers, then so is the result. If  they both, doubles, then so is the result. If the types don’t 
match up, the result is a double.  

The operators + and - are known as additive operators and they associate from left to 
right. The grammar syntax for additive operators is given below :  

additive-expression:  multiplicative-expression 

   additive-expression + multiplicative-expression 

   additive-expression - multiplicative expression 

 

The operator + performs arithmetic addition and so the operands must have arithmetic 
type. The value returned by this operator is the sum of the operands. Note that it is not 
possible to use the + operator to perform string concatenation.  

Similarly, the operator - performs arithmetic subtraction and so the operands must also 
have arithmetic type. The value returned by this operator is the difference between the two 
operands.   

3.5.5 Relational operators 

Relational operators are used to compare variables to one another in relational 
expressions.  The two variables on either side of a relational operator must be of a numeric 
type - for instance, “I don’t know” < 3 would cause a compiler error.  A relational 
expression will evaluate to a boolean constant- that is, to true or false.  Thus, only ints and 
doubles are the valid types for comparison when using this type of operator.  Specifically, if a 

and b are number variables, a < b checks to see if a is smaller than b; a > b checks to see if 
a is bigger than b; a <= b checks if a is less than or equal to b, and a >= b checks whether 

a is greater or equal to b. The relational expression returns true if the condition specified holds 
and false if it does not. 

Relational expression: 

 Variable rel_operator variable 

Variable: 

 Arithmetic expression 

 constant or literal (e.g., previously instantiated int d, 6) 

Rel_operator: 

 < 

 <= 

 > 

 >= 
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3.5.6 Equality operators 

The equality operators work the same way as the relational operators - however, they 
check to see if a variable is equal or not equal to another variable.  Again, the two variables in 
an equality expression must be of numeric type. Thus, Ints and doubles are the only data types 
that can be used with these operators.   

Equality expression: 

 Variable eq_operator variable 

Variable: 

 Arithmetic expression 

 constant expression (see below section on Constant Expressions) 

Eq_operator: 

 == 

 != 

3.5.7 Boolean operators 

The language features support for the logical AND and logical OR operations.  For logical 
AND, if both values being ANDed together are true, then the expression evaluates to true.  
Otherwise, the expression evaluates to false.  For logical OR, if one or both values being ORed 
together is true, the expression evaluates to true.  Otherwise, the expression evaluates to false. 

A boolean expression takes the form of (boolean boolean_operator boolean).  The 
expressions on each side of the boolean_operator (&& or ||) must evaluate to a boolean type.  
As a result, the expressions on each side of the boolean operator must be boolean constants 
(true or false), relational expressions (a < b), or equality expressions (g == h). 

Boolean expression: 

 Boolean expression && Boolean expression 

 Boolean expression || Boolean expression 

 Boolean 

Boolean: 

 Equality expression 

 Relational expression 

 Boolean_constant 

Boolean_constant: 

 true 

 false 
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3.5.8 Assignment operator 

The assignment operator, =, is used to associate an identifier with a value.  For instance, 

the following statement will cause the identifier d to be associated with a value of 4, and to 
have the type int.   

 

int d = 4; 

 

As such, the next time d is used in an expression, it will evaluate to 4.  The type declared 
on the left hand side of the assignment must match the expression on the right hand side of the 
expression.  For example, an identifier declared as a boolean cannot be assigned a value that is 
a double literal. 

3.5.9 Constant expressions 

Constant expressions are expressions that evaluate to string and number literals.  For 

instance, “test”, 4, and 4.266 are all constant expressions. Note that constant expressions 
are a subset of primary expressions. Constant expressions can be assigned to variables in a 
variable declaration. For instance: 

int d = 4; # 4 is a constant expression and it’s been assigned to d 

string s = “hi”; # hi is a const expression and it’s been saved in s 

3.6 Declarations 

3.6.1 Function declarations 

Our language supports two kinds of functions: Compute Functions and Drawing 

Functions. All functions must be preceded with a def keyword. Functions are both declared and 

implemented at the same time. Thus if one compute function calls another compute function, 

for example, then that other function must have been declared and implemented before. 

Otherwise, this is a compile-time error.  

Compute Functions 

Compute functions are your normal functions and they typically do some kind of 
computation like finding the square root of a number. All compute functions must have the 
“compute” specifier after the “def” specifier and they must return a value of type double (i.e. 
there is no need to specify a return type). If a function does not need to return any specific 
value, then it may simply return the value 0 to indicate that it has completed successfully. 
Compute function can have any number of named argument parameters. The argument 
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parameter passing mechanism in our language is always pass-by-value. An example of a 
compute function declaration and implementation is below : 

def compute sum (int a , int b){ 

 int sum = 0;  

 sum = a + b; 

 return sum ;  

} 

 

Note that all variable declarations in a compute function must occur first at the top of 
the function implementation.  For example, the following is illegal and causes a compile time 
error.  

def compute avg (int a , int b, int c){ 

 int tot = 0;  

 tot = a + b + c;  

 double avg = tot / 3; # compile time error 

} 

 

Drawing Functions 

Drawing Functions are the functions that specify the structure of an L system that will be 

eventually be drawn. These functions only take in a single parameter that is an integer. This 

parameter specifies how many times the L system rules will be applied in drawing the L system. 

The structure of the body of a drawing function is as follows :  

alphabet : (List of Alphabet Letters separated by commas); 

lambda -> (start letters);  

Rules of how to transform or expand a certain alphabet character.  

 

The syntax for the rules is: 

Alphabet_Letter -> Result_of_Transformation 

Alphabet_Letter  = draw_function_call 

 

The letters ‘r’ ‘l’ ‘f’ by default have the meaning, turn right by 90 degress, turn left by 90 
degrees and move forward by a unit amount respectively. However, these defaults can be 
overriden like the example below shows.  
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An Example of a drawing function: 

def draw hilbert(int n){ 

 alphabet: (A,B;f,r,l,s); 

 rules:{ 

  lambda -> A; 

  A -> l B f r A f A r f B l; 

  B -> r A f l B f B l f B r; 

  A = ; 

  B = ; 

  f = forward(15); 

  r = rotate(-60); 

  l = rotate(60); 

 } 

} 

3.6.2 Variable declarations 

Variable declarations are used to initial variables equal to constant values.  The type 
used in a declaration must match with the type that the expression on the right hand side of 
the assignment operator returns.  A variable declaration consists of the following grammar: 

Variable declaration: 
 Type identifier = variable_expr 

Type: 

 int 

 double 

 bool 

 string 

variable_expr: 

 string_literal 

           number_literal 

           bool_value 

Variable declarations are only permitted in compute functions and cannot be used in 
draw functions. Also, as previously mentioned, all variable declarations in a compute function 
must occur first at the top of the function.  

Lastly, the variable declaration only support and allow for simple literals/constants to be 
assigned and any more complex expressions such as function calls are not supported at the 
moment.  

def compute sum(int a, int b){...} 

def compute test() { 

 int x =  sum (1,2); # not allowed.  

}  
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3.7 Statements 

3.7.1 Expression statement 
An expression statement is composed of primary statements with a semicolon at the 

end of the line. 

3.7.2 If statement 
If statements come in the following two varieties: 

if (expression) 
  statement1 

 

and  

 

 if (expression) 
  statement1 
 else 
  statement2 

 

For both if statements, “expression” must be of Boolean type, and statement1 executes 
if expression evaluates to true, while statement2 in the second variety executes if expression 
evaluates to false. 

3.7.3 While loops 

The While loop control flow construct allows for executing a statement any number of 
times. 

  while (expression) statement 
 

As with if statements, “expression” must be of boolean type, and statement executes 
until the expression evaluates to false. The evaluation of expression comes before the 
execution of the statement. 

3.7.4 Return statements 

A compute function must return a value to the caller through return statements. The 

only exception is the “main” function which does not return anything.  

return number 
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The value returned by a function, “number” in this instance, must be of double type. In 
the case where no specific value needs to be returned, a value of 0 can be specified to indicate 
that the function ran correctly. 

3.8 System functions 

3.8.1 Turtle Functions 

For L-system drawings, we use turtle graphics, which draws images based on a user 
supplying relative positioning commands on a cursor. One can imagine the cursor being a turtle 
with a pen on its tail, and the user telling the turtle to go forward, turn, or lift its tail. In the 
following functions, r, theta, x, and y are all of double type. Furthermore, let X, Y, and Theta be 
the position and orientation of the cursor, respectively, and let “down” be the current state of 
the “tail.” 

forward(r) 

The turtle moves “forward” by r pixels. Formally, the change in X and Y is cos(Theta)r 
and sin(Theta)r, respectively. If “down” is set to true, then the line between (X,Y) and 
(X+cos(Theta)r,Y+sin(Theta)r) is drawn. 

turn(theta) 

The turtle turns counterclockwise by theta (in degrees). Formally, the change in Theta is 
theta. 

up() - pen up 

This function sets  pen “down” to false. 

down() 

This function sets “down” to true. 

setx(x) 

 This function sets X:=x 

sety(y) 

 This function sets Y:=y 
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3.8.2 Input / Output  

At the moment, user input, such as command line arguments, are not supported but it is 
still possible to print out to a JTextArea using a builtin library command print. Print supports 
taking as input all 4 data types in the language. These are namely boolean, int, double and 
strings. 

For example:  
 

 

def compute test() { 

 int i = 0; 

 while ( i< 10){ 

 print(i); # prints numbers 0 through 9 

 i = i + 1; 

} 
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Section 4: Project Plan 

4.1 Team Responsibilities 

Figure 4.1.1 summarizes the distribution of responsibilities for the project. Though there 
was some overlap with the compiler modules, each team member created the vast majority of 
the compiler components listed next to their name. Aside from Ethan attempting to provide a 
consistent format style across the document and typo fixes, there was no overlap in the 
creation of the with the final report sections. Section 7 is the only exception to this as each 
member obviously wrote their own lessons learned and advice for future teams. Section 7 is 
not listed in figure 4.1.1 for this reason. 
 

Team Member Compiler Final Report 

Jervis Scanner 

Parser 

AST Generation 

Semantic Analysis 

Section 3: Language Reference Manual 

 

Michael Test Script and Cases Section 1: Language White Paper 

Section 6: Test Plan 

Timothy Standard Library 

Optimization 

Standardization of Formatting 

 

Ethan Command Line Interface 

Code Generation 

Standard Library 

Section 2: Language Tutorial 

Section 4: Project Plan 

Section 5: Architectural Design 

Section 8: Appendix 

Editing, formatting, and polishing. 

Figure 4.1.1 – Team Member Responsibilities 

4.2 Software Development Environment  
The LSystem compiler is written in O’Caml on Linux and Mac. Though the compiler itself 

is written in O’Caml, it requires the Java JDK 1.6 to compile the intermediate Java code, and 
thus to test the compiler during development. Team members used the VIM text editor and the 
Eclipse (with the OcaIDE plugin) integrated development environment. Though a makefile has 
been included with the compiler source code, some of our team members found it easier to 
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develop using the ocamlbuild tool as it, combined with OcaIDE, provided for automatic 
compiling when source files were modified and saved. 

The compiler was tested with a custom shell script, called test.sh, and a collection of 
LSystem source files. The source code for the compiler was managed in a subversion repository 
on Google code: http://code.google.com/p/plt-lsystem/. 

  

http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
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http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
http://code.google.com/p/plt-lsystem/
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4.3 Project Processes 

4.3.1 Planning 

After submitting the language reference manual the team met each Sunday to discuss 
the project, assess our progress, and decide what tasks to perform during the upcoming week. 
This method worked pretty. It kept the team on track. As a result almost all of the functionality 
originally specified in the language reference manual was included in the compiler. 

4.3.2 Specification 

During the Sunday group meeting, immediately following the Wednesday the LRM was 
due, the group discussed how to build the compiler given the LRM and the example MicroC 
compiler. The specification of the compiler changed as we realized the difficulty of 
implementing certain features given the allotted amount of time. These changes have been 
noted in section 3 of this document. 

4.3.3 Development 

 Initially we imagined an iterative approach to development where the team added a 
feature tested it, then added another feature and tested it, and so on. What actually happened 
was the scanner, parser, and AST modules were created before the code generation module 
was created. The code generation module was intern fully functional by the time the semantic 
analysis module was started. Testing did happen incrementally, by feature. That went as 
originally planned. 

The semantic analysis module was the last major component to be created. It was 
created and tested during about the last 2 weeks of the semester. Our initial assumption was 
that it would be difficult to do semantic analysis with a partially complete AST module. This 
proved to be true, as it was easier to implement the semantic analysis module after the rest of 
the compiler front-end (i.e. scanner, parser, and AST modules) was close to being complete. In 
hindsight, the insight we gained while doing the semantic analysis would have informed the 
development of the rest of the compiler had it been created in tandem with the other 
components.  

4.3.4 Testing 

 The testing process was managed by Michael. Test case files were written by Michael, 
and contributed by other team members, as features were implemented. The testing process is 
described in greater detail in section 6 of this document. 
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4.4 Programming Style Guide 

4.4.1 General Principles 

The team had a very informal approach to programming style. We attempted to follow 
the coding style of the example Microc compiler provided during the course of the term. This 
worked well at first as we divided up the modules very cleanly. We learned during the last few 
weeks of the semester that this informal approach was a mistake. We began to trip over each 
when more fully testing and patching the modules. The largest problem was that each team 
member was using a different text editor or IDE with different settings. The tab width in one 
team members editor might have been eight whitespace characters, in another two whitespace 
characters, and another a one four character wide tab. This caused a huge formatting headache 
and could have been avoided if we had standardized our tab width to start with. 

4.4.2 Documentation Comments 

 We found that the Professor Edwards thoughts regarding commenting O’Caml code 
held true throughout the development of the compiler. Namely that O’Caml’s succinct syntax 
makes it very understandable, and thus a large quantity of verbose comments was not needed 
to explain the functionality of the various modules. 

4.5 Project timeline 
The following target dates were set to for the various project milestones 

 

Date Milestone 

09-28-2011 Language proposal, with core language feature complete 

10-31-2011 The language reference manual complete 

11-13-2011 Compiler 0 – Able to print “Hello, World!” 

11-19-2011 Scanner and Parser complete 

11-26-2011 Code generation complete 

12-16-2011 Semantic analysis complete 

12-18-2011 Compiler fully complete 
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4.6 Project Log 
 The project log, shown below, is essentially the milestones and highlights from the 
project’s Subversion repository commit log. It has been rearranged by feature, and then sorted 
chronologically. Minor commits and bugfixes were left out, as well as those lacking sufficient 
detail to discern the purpose of the commit. The full commit log can be viewed at: 
http://code.google.com/p/plt-lsystem/source/list 

4.6.1 Scanner/Parser/AST 
Date Team Member Milestone/Feature 

11/6 Jervis Implemented a basic working scanner & parser based on MicroC. 

11/14 Jervis Added the compute functions. Implemented the type double and 
boolean in parser and AST. 

11/15 Jervis Completed implementing the def_draw function that's used to 
describe lsystem. Tested out with hilbert function described in LRF to 
make sure that the program is parsed successfully. 

11/16 Jervis 
Added the POW (^) operator and updated make file to produce 
verbose output when parser is compiled. 

4.6.2 Command-Line Interface  
Date Team Member Milestone/Feature 

11/13 Ethan Create basic top-level based on Microc. 

11/14 Jervis Added a -a switch for AST printing. 

11/20 Ethan Top-level has been converted to a command line interface. Added 
improvements such as usage instructions as well as exception handling 
for invalid arguments. 

12/4 Jervis Added a -s option do that the semantic analysis stage can be run. 

12/18 Ethan Added a -t switch for "testmode" 

12/19 Jervis Reconfigured the CLI so that the semantic analysis stage runs before 
the code generation stage, and not indepedantly. 

4.6.3 Code Generation 
Date Team Member Milestone/Feature 

11/13 Ethan Compiler 0: The compiler produces compilable Java source code that 
prints “Hello, World!” to the console. Main and other compute 
functions are translated. 

11/27 Ethan Draw function code generation complete. Compiler able to produce 
Java code that renders images from L-systems. 

12/14 Ethan Compiler now produces Java bytecode (not just Java source code) with 
the –c command. 

12/17 Ethan The start rule of a draw function comes from its lambda rule, and not a 
function argument. 

http://code.google.com/p/plt-lsystem/source/list
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12/17 Ethan Added slider that scales the rendered L-system image. 

12/18 Timothy Made standard library functions assignable to constants in L-system. 
Broke slider control. Image no longer scales. 

4.6.4 Standard Library 
Date Team Member Milestone/Feature 

11/6 Timothy Created Java Turtle class. 

11/14 Ethan Standard library module created. Java code integrated. 

12/17 Ethan Added slider that scales the rendered L-system image. 

12/18 Timothy Made standard library functions assignable to constants in L-system. 

12/18 Timothy Made the image scale with Java program resizable. 

12/19 Timothy The -t flag now outputs a bitstring of the rendered image to a text file 
for testing. 

4.6.5 Testing 
Date Team Member Milestone/Feature 

11/6 Michael Created arithmetic tests. 

11/20 Michael Updated test.sh bash script to iterate through all test cases with 
updated syntax, listing test cases that failed at the end of execution. 

12/4 Michael Updated test.sh bash script to attempt to compile all test cases from .ls 
to java byte code (.ls -> .java -> .class).  

12/15 Michael Began adding semantic tests. 

12/15 Ethan Added a variety of draw tests. 

12/19 Michael Finished testing to validate drawing programs.  Test script should 
essentially be finished.  Added a directory with expected bitstring 
result files for each drawing test file.  

4.6.6 Semantic Analysis 
Date Team Member Milestone/Feature 

12/4 Jervis Outlined basic functions that will be used to semantic analysis. 

12/14 Jervis Implemented data type checking. 

12/17 Jervis Added checks for compute functions, control flow functions, and other 
constructs 

12/19 Jervis Completed semantic analysis for draw functions. 

12/19 Jervis Connecting semantic analysis with the normal compilation process. 

 

  

http://test.sh/
http://test.sh/
http://test.sh/
http://test.sh/
http://test.sh/
http://test.sh/
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4.6.7 Commit Statistics 

The graphic in figure 4.6.0.1 depicts the commit statistics for the life time of the project. 
It was generated using project management software called Redmine. In the graphs, Revisions 
refers to a count of repository commits and is displayed in reddish/orange. Changes refers to a 
count of the number of files that have changed overall and is displayed in blue. Note that 
“engiskahn09” refers to Michael in the lower graph. 

The commit statistics highlight that even though we began developing the compiler in 
early November, and worked on it steadily, more commits were done in December. This is due 
to the bug fixes and code reformatting that took place at the end of the project. 

 

Figure 4.6.0.1 – Subversion Repository Commit Statistics 
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Section 5: Architectural Design 

5.1 High Level Architectural Design 
 The LSystem compiler consists of seven modules.  The modules are depicted in figure 
5.1.1, and their purposes are explained in the subsequent subsections of section 5. 

 

 

 

Figure 5.1.1 – Compiler Architecture and Related Components 
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5.2 Component Interface Interaction 

5.2.1 Command Line Interface (lsystem.ml - Author: Ethan Hann) 

The LSystem CLI evolved out of the Microc top-level. It, however, is not a top-level, but a 
switch-centric command line interface for the LSystem compiler. The CLI is used to invoke the 
various stages of the compiler. The ordered list of these stages includes: 

1. AST generation 
2. Semantic analysis checking 
3. Intermediate (Java) code generation 

 

This list is ordered to indicate that each stage requires that the previous stages in the list 
are invoked in sequence before the desired stage is itself invoked. For example, if the -s switch 
is passed to the CLI (see “CLI Usage” below) to perform semantic analysis, stage 1 (AST 
generation) is executed before stage 2 (semantic analysis). This is logical, as semantic analysis 
cannot be performed unless the AST has been generated.  

The compiler accepts a switch that corresponds to a stage in the above list as its first 
argument. This is either -a (AST generation), -s (semantic analysis), -c (generate Java 
code/program). The second argument is the file system location of the target LSystem source 
file. The third argument is either –t (test mode), or –v (verbose mode). More complete 
explanations of these arguments are contained in figure 5.2.1.2.  
 

Switch Explanation 

-a Generates the AST and prints an exact copy of the input source file if AST 
generation was successful. 

-s Performs semantic analysis on the AST, generated from the input source file. 

-c Generates an intermediate representation of the source file in the form of Java 
code from the AST. 

SOURCE_FILE The file path of the target LSystem source file. 

-v Verbose option. Prints intermediate code, and other information useful for 
debugging. 

-t Test mode option. Allows the compiler to perform additional testing of draw 
functions. 

Figure 5.2.1.2 – CLI Argument Descriptions 

lsystem [-a|-s|-c] SOURCE_FILE [-t|-v] 

Figure 5.2.1.1 CLI Usage 
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 5.2.2 Scanner (scanner.mll - Author: Jervis Muindi) 

The purpose of the scanner is to specify what tokens are recognizable in our language. 
That is, the scanner goes through the source file and transforms the stream of character that 
are present in the source into a stream of token which are specified in this. This process is 
necessary in reject all source programs that do not use the syntax of our language.  

5.2.3 Parser (parser.mly - Author: Jervis Muindi) 

The role of the Parser is to take the stream of tokens obtained from the scanner and try 
to deduce whether they are in the language specified by the context-free grammar. The 
context-free grammar, in our case was written in the parser.mly file. In the process of parsing 
the source file, an abstract syntax is also generated. 

5.2.4 AST (ast.ml - Author: Jervis Muindi) 

The abstract syntax tree defines the core structure of a program in a language and this 
file (ast.ml) contains the precision definition of the structure of our abstract syntax tree for our 
language. The parser.mly file references the ast.ml file so that during the process of parsing the 
program, the abstract syntax tree is also generated.  

5.2.5 Semantic Analyzer (semantic.ml - Author: Jervis Muindi) 

 The semantic analyzer examines the abstract syntax tree structure produced by the AST 
module. If it completes its analysis without throwing any exceptions the compiler proceeds to 
the code generation phase of the compilation process. 

5.2.6 LSystem Standard Library (lsystemstd.ml - Author: Timothy Sun) 

 The LSystem standard library (STL) functions are written in Java. They are concatenated 
to the intermediate Java code produced by the compiler in the Java Code Generator 
component. It provides the Java drawing and console output functions. It also dynamically 
scales the rendered image so that it fits on screen. 

5.2.7 Java Code Generator (compiler.ml - Author: Ethan Hann) 

 The code generator transforms the AST into Java source code and combines it with the 
Java code in the LSystem standard library (STL). The resultant code is written to a Java source 
file that shares the same name as the LSystem source file. For example, if the LSystem source 
file is called “hilbert.ls” (sans quotes) then the Java source code file would be called 
“hilbert.java” (again, sans quotes).  After producing the intermediate Java source file the code 
generator then attempts to compile the intermediate Java code into a Java bytecode program 
by using an external Java compiler located in the user’s path. 
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Section 6: Test Plan 
Formal testing began as soon as a rudimentary compiler was constructed.  The test suite 

on this project was designed to be built alongside the L-system compiler.  As soon as features 
were implemented in the compiler, corresponding test classes were created to verify that these 
features were in working order.  This agile approach allowed for features to be tested 
immediately, leading to quick verification and easing any necessary debugging.  Furthermore, 
these tests were carried over from build to build, constructing a suite of regression tests.  This 
further reinforced build integrity, as the test suite could be executed with each new build to 
ensure that new changes did not break any existing functionality.  The net result was a project 
developed with no emergency code rollbacks and a very fast quality assurance process. 

The test suite can be divided into three parts that reflect the three main phases of 
development experienced by the project.  Owing to the agile nature of testing, these parts were 
developed in parallel with their corresponding phases. 

6.1 Phase 1: Rudimentary Compiler 
Phase 1 of the development process was the initial development phase, where a 

rudimentary compiler had been created.  The development goal at the end of this phase was to 
have a compiler that could handle purely computational programs.  As such, functions such as 
arithmetic, printing, and basic program structure were tested during this phase. 

6.2 Phase 2: L-system Drawing 
Phase 2 of the development process corresponded to the development of portions of 

the compiler dedicated to handling L-system drawing programs, the main objective of the 
project.  The goal at the end of this phase was to have a compiler that could handle drawing 
and computational programs, outputting a visual representation of L-systems on-screen in the 
case of the former.  All functionality pertaining to creating L-system drawing programs, such as 
defining custom terminal variables or customizing the number of iterations to use in expanding 
an L-system grammar, were tested during this phase. 

 

6.3 Phase 3: Semantic Analysis 
Phase 3 of the development process corresponded to the construction of the semantic 

analyzer, designed to catch syntactic and programmatic errors in files before beginning formal 
compilation into intermediate Java source code.  The goal at the end of this phase was to 
develop functionality to catch errors in input programs that would trigger errors or warnings 
from the Java compiler if the intermediate Java source code were to be compiled, in addition to 
catching syntactic errors pertaining to the L-system grammar itself.  Common errors and edge 
cases, such as defining a non-boolean condition in a conditional statement, attempting to 
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create a program without a main method, and incorrectly instantiating variables were tested 
during this phase. 

6.4 Tools 
A bash shell script was used to automate the execution of all tests from each phase.  

Individual test programs were written in the L-system programming language. 

6.5 Implementation 

6.5.1 Implementation Phase 1 

Since this phase was concerned with processing computational programs, test programs 
were created to test basic computational functionality.  Each of these test programs would 
focus on a piece of functionality- for instance, a test program was created to test the 
subtraction of two integers, and another test program was used to test the subtraction of two 
floating-point doubles.  The common thread amongst the tests in this phase was that they all 
were expected to run successfully with a specific end result, akin to making an assertion during 
unit testing that a manipulated piece of data in a test method was in fact manipulated as 
expected.  To that end, a data file was created with values of expected output for each test file 
made during this phase.  When testing automation was implemented, each of these programs 
was compiled and executed, with the output being checked against the corresponding expected 
output in the data file. 

An example test program from phase 1: 

 

def compute test(double a, double b) 

{ 

 return (a + b); 

} 

 

def compute main() 

{ 

 int x = 3; 

 double y = 2.0; 

 double r = 0; 

 r = test(x, y); # int can be used in a place of a double. 

 print(r); 

} 

 

Figure 6.5.1.1 - validcall1.ls test 

6.5.2 Implementation Phase 2 

The goal in this phase was to ensure that drawing programs would be executed correctly 
and could be customized according to the specifications laid out in the language reference 
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manual.  The test programs created during this phase can be divided into two subgroups- one 
consisting of well-known L-systems that are likely to be programmed in the language, allowing 
for easy visual verification of correctness, and the other consisting of programs that customize 
some aspect of the L-system grammar- for instance, a program that explicitly maps all of an L-
system’s terminal symbols to specific drawing functions. 

Image data from the visual representation of the L-systems was utilized to verify the test 

programs in this phase.  Automation implementation of this phase was similar to phase 1; an 

image for each test program was produced that was known to be correct.  This image was then 

transformed into pixel data, consisting of a bit for every pixel in the image that determined 

whether the pixel was black or white.  This pixel data effectively formed a large bitstring that 

was stored in a data file, one for each test program.  When a test program was executed in 

subsequent builds, the image bitstring was extracted from its generated image and compared 

to the corresponding data file to verify image correctness. 
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An example test program from phase 2: 

 

def draw levycCurve(int level){ 

 alphabet:  (X); 

 rules:{ 

     lambda -> X; 

     X -> r f X l l f X r; 

     l = turn(-45); #Mapping custom variables to built-in drawing methods 

     r = turn(45); 

 } 

} 

 

def compute main(){     

    levycCurve(12); 

} 

Figure 6.5.2.1 – levyc.ls test 

6.5.3 Implementation Phase 3 

This phase centered around ferreting out issues that could arise from improperly coded 
programs- for instance, rejecting an input L-system program if the user did not define a main 
method in the program body.  The goal was to ensure that programs not adhering to the syntax 
laid out in the language reference manual would be appropriately rejected by the compiler 
before compilation was actually attempted.  Automation of this process focused on ensuring 
that for each test program, the compiler prematurely exited due to an error in the program and 
did not generate an intermediate Java source code file. 

Due to time constraints, the determination of which errors to check during this phase 
was based mostly on what the developers believed would be common mistakes or likely 
attempts at breaking the built-in grammar. 
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An example test program from phase 3: 

 

def draw hilbertDerivation(int level){ 

 alphabet:  (A , B, C, D); 

 rules:{ 

     lambda -> A;         

     A  ->  l B f r A f A r f B l;     

     B  ->  r C f l B f B l f C r;     

     C  ->  l D f r C f C r f D l; 

     D  ->  r A f l D f D l f A r;     

     f = forward(1); 

     l = turn(-80); 

     r = turn(80); 

 } 

} 

 

def compute main() 

{    

 hilbertDerivation(7, 3); 

} 

 

Figure 6.5.3.1 – toomanydrawfunctionparameters.ls 

6.6 Automation: 
As previously stated, a bash shell script was written to automate all testing.  For the 

computational and drawing groups of test programs, the tests were compiled, the script 
verified that compilation from the L-system language to Java occurred and that compilation 
from Java to a Java class file occurred, and then the programs were executed and their output 
compared appropriately to expected values, as detailed above.  For the semantic group of test 
programs, the programs were fed into the compiler, and the script verified that no intermediate 
Java file was generated for each test, indicating that the compilation had failed due to an error 
present in each test. 
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Section 7: Lessons Learned 

7.1 Jervis 

7.1.1 Lessons Learned 

Taking this PLT class has been a lot of fun and I have learned so much. I had previously 
approached compilers as black boxes that magically did their work. However, after taking this 
class, I have come to know that there is actually no black magic and that the process of 
compilation is well structured one that involves stages of scanning, parsing and eventual code 
generation. For example, the simplicity of the Donald Knuth algorithm to build a LR(0) 
automaton which is in turn used to build the SLR parsing table is something that I find to be 
amazing. 

Additionally, I have also come around to the functional paradigm of programming. In 
particular, when I first starting learning OCaml, I was annoyed with how picky the compiler was 
- it seemed to me that it would complain even about the slightest of problems. However, in 
writing the compiler in OCaml, I have grown to actually appreciate the error checking that the 
compiler does. In every single case where I got an error message, it was to an actual problem in 
the code. The benefit of this strict error checking by the compiler is that when it compiles 
actually successfully, it will always work. 

Moreover, working and collaborating together in a group has been a good learning 
experience. I got to see the usefulness of using code control tools such as SVN in code 
management as well as the importance of having a good plan of division of labor. In particular, 
in my group, we are able to divide the tasks in way that we were all able to work on different 
parts of the compiler simultaneously. We did this as much as possible to avoid the problem of 
having to wait on a certain team member to complete a certain module before work on 
another could begin. 

Furthermore, in developing the compiler, I also saw how useful and crucial it is to 
integrate testing as part of the development process. Having a good testing suite helped ensure 
that as we added more features to the compiler or perhaps after rectifying a known bug, we did 
not inadvertently introduce extra bugs in the process. 

Lastly, I have tremendously enjoyed the class lectures which were always interesting 
and educative. Of particular note are discussions on different language paradigms such as logic 
programming and lambda calculus. It was very refreshing to see the mathematical and 
theoretical underpinnings on which functional programming languages such as OCaml are 
actually built upon.  

7.1.2 Advice for Future Teams 
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My advice to future team is to first choose your team members well since you will need 
to collaborate very closely with them over the course of the semester. It is also important to 
figure out your working style and how you are going to work. Of crucial importance, is having 
weekly progress meeting so that you can track your progress and discuss future goals for the 
coming week. If you’re in a team where you’re unable to agree and adhere on a weekly meeting 
time, I’d strongly suggest joining another team. 

My second piece of advice is to start learning OCaml early on especially if it is the first 
time that you are encountering functional paradigm of programming. Yes, it will be challenging 
and difficult at first – which is why you should start early – but the final compiler has to be 
written in OCaml and not having a good grasp of OCaml by the time you actually need to start 
implement the compiler is a situation you would not want to be in.   

While still on the topic of OCaml, I should mention that in OCaml, there are only two 
possible types of errors that you can get : syntax errors and type-mismatch errors. You are will 
be seeing and dealing with these a lot so it’s also important to understand how to read and 
resolve the errors. When starting out you may feel that the OCaml compiler very picky – I 
certainly did – but rest assured that the error messages are valid ones. Indeed, every single 
time I have had to resolve such errors, there was indeed a problem with the code. What this 
means, is that when you are able to get your code to compile successfully, it really is going to 
work. 

Also, I know everyone says this (and you probably already know it yourself) but I feel 
that it is important enough that it bears repeating again: You should start your work early. 
Actually, don’t start early, start earlier. Seriously, you should figure out your project as soon as 
possible so that this way you can get more time to work on it. Starting early also gives you the 
nice luxury of having some buffer time should you even need it. 

With regards to actually implementing the compiler an excellent starting point is the 
MicroC compiler that Professor Edwards puts up on the website. Note that if your language 
deviates significantly from a C-style syntax then, it would probably be best to start from scratch. 
That said, it is still a good idea to look at the MicroC compiler for nothing else than seeing how 
the various parts of a compiler can be built using OCaml. 

7.2 Ethan 

7.2.1 Lessons Learned 

 The most important lesson I learned was that adding constraints to the syntax of the 
language in order to simplify the compiler often makes implementing the compiler more 
difficult than it would otherwise be. For example, specifying that the language has a main 
function and that function has to be the last function defined in a source file means that you 
have to add extra semantic test cases to make sure that the main function is actually the last 
function defined in a source file. If the order of the functions does not matter (and it should 
not, as the code generation module can work however you want it to… reordering the 
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generated code as it needs for instance) during intermediate code generation, then that extra 
work is a waste of time. 

7.2.2 Advice for Future Teams 

 Working steadily on the project over time is beneficial. It is good to start early, but 
continuing to work on the project steadily every week over the course of the semester is better 
than having marathon coding sessions every three weeks. This goes for the final report as well. 
Thankfully my group started the final report right after the LRM was due. This made the last 
few weeks of the semester a lot easier. 

 Write your coding standard before you start coding. We had team members using 
Eclipse, vim, or gedit at any given time with all different tab settings. This caused formatting 
problems. Standardize the tab width among team members at least.  

7.3 Michael 

7.3.1 Lessons Learned 

Building up a test suite as the compiler is developed is optimal- it saves time in the long 
run and serves as a suite of regression tests that can be used to ensure that new builds didn’t 
break any existing functionality. 

There’s a reason why version control systems are used in virtually all corporate software 
development projects, especially since a lot of them have built-in bug tracking systems.  Having 
everything integrated into one application like that makes the development process a lot faster 
and easier. 

7.3.2 Advice for Future Teams 

Start early!  At the very least, plan out how you’re going to grow your project- figure out 
what to get working first, and then build off of that.  Having that sequence of things to 
implement makes the process a lot smoother. 

Start the report early as well- even if you just copy/paste the outline and fill in bullet 
points as you go.  Memories of stuff you did on a given day will be fresher and reports will be 
more accurate the sooner you log what you did. 

7.4 Timothy 

7.4.1 Lessons Learned 

Working on the code regularly allowed me to actually know what was going on. I didn’t 
understand all of the code my teammates wrote all at once, but had I not looked at the code 
periodically, I would not have really gotten anywhere with the code. 
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Functional programming is cool. As a math-oriented person, a lot of it made a lot of 
intuitive sense after I figured out the syntax. I can’t imagine having to write a parser in Java. 
Higher-order functions and list-manipulating functions were probably the best features for me. 

I have no idea how we would have gotten through the semester without SVN. “svn 
update” is so much easier than e-mails, etc.  

7.4.2 Advice for Future Teams 

Make sure you’ll enjoy whatever language you’re working on. Even though it might not 
turn out exactly as you wanted it to (our language is missing some features I had envisioned at 
the beginning), but trust me: seeing something close to the final product is a great feeling. 
When we had just finished the drawing code generation, I was plugging in every L-system 
specification I could find online just so I could see the program spit out some beautiful fractal. 

Starting early. Even though some people might work better under pressure, you still 
want to spread everything out. We probably missed all our projected milestones, but oh well. 

Get used to reading/writing O’Caml code. It’s perhaps not as immediately accessible as 
languages like Java or Python, but it’s a surprisingly clean language to work in. Agree on coding 
conventions early on; it’s hard to read different styles. 

On a less serious note: don’t use Eclipse. I have never seen more random whitespace in 
my life. 
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Appendix A: Code Listing 

lsystem.ml 

(* Primary Author: Ethan Hann (eh2413) *) 

(* Command Line Interface *) 

 

(* Possible actions for the compiler. *) 

type action = Ast | Compile | SA 

 

(* Custom exceptions. *) 

exception NoInputFile 

exception InvalidArgument 

 

(* Compiler usage instructions. *) 

let usage = Printf.sprintf "Usage: lsystem [-a|-s|-c] SOURCE_FILE [-t|-v]" 

 

(* Get the name of the program from the file name. *)      

let get_prog_name source_file_path = 

 let split_path = (Str.split (Str.regexp_string "/") source_file_path) 

in 

 let file_name = List.nth split_path ((List.length split_path) - 1) in 

 let split_name = (Str.split (Str.regexp_string ".") file_name) in 

  List.nth split_name ((List.length split_name) - 2) 

 

(* Main entry point *) 

let _ = 

 try 

  let action = if Array.length Sys.argv > 1 then 

   match Sys.argv.(1) with  

     | "-a" -> Ast 

     | "-s" -> SA (*semantic analysis testing*)  

     | "-c" -> Compile 

     | _ -> raise InvalidArgument 

   else raise InvalidArgument in 

  let prog_name =  

   if Array.length Sys.argv > 2 then 

    get_prog_name Sys.argv.(2) 

   else raise NoInputFile in 

  let verbose =  

   if Array.length Sys.argv > 3 then 

    match Sys.argv.(3) with  

    | "-v" -> true 

    | _ -> false 

   else false in 

  let testmode =  

   if Array.length Sys.argv > 3 then 

    match Sys.argv.(3) with  

    | "-t" -> true 

    | _ -> false 

   else false in  

  let input_chan = open_in Sys.argv.(2) in 

   let lexbuf = Lexing.from_channel input_chan in 
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   let reversed_program = Parser.program Scanner.token lexbuf in 

  let program = List.rev reversed_program in 

  match action with  

   | Ast -> let listing = Ast.string_of_program program in 

print_string listing 

   | SA -> ignore (Semantic.check_program program); 

   | Compile -> if Semantic.check_program program then 

       let listing = Compile.translate 

program prog_name verbose testmode in  

            print_string listing 

       else raise(Failure("\nInvalid 

program.\n")) 

 with  

  | InvalidArgument -> ignore (Printf.printf "InvalidArgument\n 

%s\n" usage) 

  | NoInputFile -> ignore (Printf.printf "The second argument must 

be the name of an l-system file\n %s\n" usage) 

scanner.mll 
 

(* Primary Author: Jervis Muindi (jjm2190) *) 

{ open Parser } 

 

let letter = ['a'-'z' 'A'-'Z'] 

let digit = ['0'-'9'] 

let punc = ['~' '`' '!' '@' '#' '$' '%' '^' '&' '*' '(' ')' '-' '+' '=' ',' 

'.' '?' '/' '<' '>' ':' '''  ';' '{' '}' '[' ']' '|' ' '] 

(*Escape character sequences 

  "\\\"" -> "[ \" ]" -> a single double quote  

 "\\\\" -> '\\' -> a backslash 

 "\\n" -> \n -> new line 

 "\\t" -> \t -> tab char 

*) 

let esp =   "\\\"" | "\\\\" | "\\n" | "\\t" (*Escape characters : see comment 

above*) 

let exp = 'e'('+'|'-')?['0'-'9']+ 

let float = '-'? (digit)+ ('.' (digit)* exp?|exp) 

let stringlit = '"' (letter | digit | punc | esp)*  '"' 

let negative_int = '-'(digit)+ 

 

rule token = parse 

  [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *) 

| '#'     { comment lexbuf }           (* Comments *) 

| '('      { LPAREN } 

| ')'      { RPAREN } 

| '{'      { LBRACE } 

| '}'      { RBRACE } 

| ';'      { SEMI } 

| ','      { COMMA } 

| ':'      { COLON } 

| '+'      { PLUS } 

| '-'      { MINUS } 

| '*'      { TIMES } 

| '/'      { DIVIDE } 
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| '='      { ASSIGN } 

| "&&"     { AND } 

| "||"     { OR } 

| '^'      { POW } 

| "=="     { EQ } 

| "!="     { NEQ } 

| '<'      { LT } 

| "<="     { LEQ } 

| ">"      { GT } 

| ">="     { GEQ } 

| "->"     { ARROW } 

| "alphabet" { ALPHABET } 

| "boolean" { BOOLEAN } 

| "def"     { DEF } 

| "compute" { COMPUTE } 

| "draw" { DRAW } 

| "double" { DOUBLE } 

| "false"  { FALSE } 

| "true"   { TRUE } 

| "if"     { IF } 

| "else"   { ELSE } 

| "int"    { INT }  

| "lambda" { LAMBDA} 

| "return" { RETURN }  

| "rules"  { RULES } 

| "string" { STRING } 

| "while"  { WHILE } 

| (digit)+ as lxm { LITERAL(int_of_string lxm) } 

| negative_int as lxm { LITERAL(int_of_string lxm) } (*negative integer*) 

| letter as lxm { LETTER(String.make 1 lxm)  } (*converts lxm to a string*) 

| letter (letter | digit | '_')* as lxm { ID(lxm) } 

| float as lxm { FLOAT(float_of_string lxm) } 

| stringlit as lxm { STRINGLIT(lxm) } 

| eof { EOF } 

| _ as char { raise (Failure("Illegal character: " ^ Char.escaped char)) } 

 

and comment = parse 

  '\n' { token lexbuf } (*Comments are in effect until the end of the line*) 

| _    { comment lexbuf } 

 

parser.mly 
%{  

(* Primary Author: Jervis Muindi (jjm2190) *)  

open Ast 

let parse_error s = (* Called by the parser function on error *) 

  print_endline s; 

  flush stdout 

%} 

 

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA COLON 

%token PLUS MINUS TIMES DIVIDE POW ASSIGN  

%token EQ NEQ LT LEQ GT GEQ 

%token AND OR 
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%token BOOLEAN DOUBLE STRING INT 

%token FALSE TRUE 

%token ALPHABET LAMBDA RULES  

%token RETURN IF ELSE WHILE  

%token DEF COMPUTE DRAW 

%token ARROW 

%token LETTER 

%token <int> LITERAL 

%token <float> FLOAT 

%token <string> STRINGLIT 

%token <string> ID 

%token <string> LETTER 

%token EOF 

 

%nonassoc NOELSE 

%nonassoc ELSE 

%right ASSIGN 

%left OR 

%left AND 

%left EQ NEQ 

%left LT GT LEQ GEQ 

%left PLUS MINUS 

%left TIMES DIVIDE 

%right POW  

 

%start program 

%type <Ast.program> program 

 

 

%% 

 

program: 

   /* nothing */ { [] } 

 | program fdecl {  ($2 :: $1) } 

 

fdecl: 

   DEF COMPUTE id LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list 

RBRACE  

   { 

    CFunc({  

     fname = $3; 

     formals = $5; 

     locals = List.rev $8; 

     body = List.rev $9  

    }) 

   } 

 | DEF DRAW id LPAREN formals_opt RPAREN LBRACE rules RBRACE 

   { 

    DFunc({ 

     name = $3; 

     formal = $5; 

     rules = $8; 

    }) 

   } 

 

id: 
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   ID     { $1 } 

 | LETTER { $1 } 

 

alphabet_list: 

   LETTER                     { [$1] } 

 | alphabet_list COMMA LETTER { $3 :: $1 } 

 

alphabet: 

 ALPHABET COLON LPAREN alphabet_list RPAREN SEMI { Alphabet($4) } 

 

production_list: /*the RHS of a production rule*/ 

   LETTER                 { [$1] } 

 | production_list LETTER { $2 :: $1 } 

 

turtle_func_paramlist_opt: 

   /* nothing */         { [] } 

 | turtle_func_paramlist { List.rev $1 }   

 

turtle_func_paramlist: 

   expr                             { [$1] } 

 | turtle_func_paramlist COMMA expr { $3 :: $1 } 

   

erule: /*expansion rule*/ 

 LETTER ARROW production_list SEMI { ERule($1, List.rev $3) } /*Reverse 

it so that we read in list in the right order going from left to right*/ 

 

frule: /*rule that specifies */ 

   LETTER ASSIGN SEMI                                            { 

EmptyFRule($1) } /*the empty rule. e.g A = ;*/ 

 | LETTER ASSIGN ID LPAREN turtle_func_paramlist_opt RPAREN SEMI { 

FRule($1, $3, $5)   } 

 

lambdarule: 

 LAMBDA ARROW production_list SEMI {Lambda(List.rev $3) } /*Reverse it 

so that we read in list in the right order going from left to right*/  

 

rule:  

   erule { $1 } 

 | frule { $1} 

 

rule_list: 

   rule            { [$1] } 

 | rule_list rule  { $2 :: $1 } 

 

rules: 

 alphabet RULES COLON LBRACE lambdarule rule_list RBRACE { LSystem($1, 

$5, List.rev $6) } /*Apply List.rev so that the rules are printed in the 

right order going from top to bottom as they were originally entered.*/ 

 

datatype: 

   BOOLEAN { BooleanType } 

 | INT     { IntType } 

 | DOUBLE  { DoubleType } 

 | STRING  { StringType } 

 

formals_opt: 
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   /* nothing */ { [] } 

 | formal_list   { List.rev $1 } 

 

formal_list: 

   datatype id                   { [FParam($1, $2)] } 

 | formal_list COMMA datatype id { FParam($3, $4) :: $1 } 

 

vdecl_list: 

   /* nothing */    { [] } 

 | vdecl_list vdecl { $2 :: $1 } 

   

vdecl: 

 datatype id ASSIGN expr SEMI { VDecl($1, $2, string_of_expr $4) } 

 

stmt_list: 

   /* No empty block allowed */ { [] }  

 | stmt_list stmt               { $2 :: $1 } 

 

stmt: 

   expr SEMI                               { Expr($1) } 

 | RETURN expr SEMI                        { Return($2) } 

 | LBRACE stmt_list RBRACE                 { Block(List.rev $2) } 

 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) } 

 | IF LPAREN expr RPAREN stmt ELSE stmt    { If($3, $5, $7) } 

 | WHILE LPAREN expr RPAREN stmt           { While($3, $5) } 

 

expr: /*a primary expression*/ 

   LITERAL                      { Literal($1) } 

 | STRINGLIT                    { String($1) } 

 | FLOAT                        { Float($1) } 

 | id                           { Id($1) } 

 | expr PLUS  expr              { Binop($1, Add,   $3) } 

 | expr MINUS  expr             { Binop($1, Sub,   $3) } 

 | expr TIMES  expr             { Binop($1, Mult,  $3) } 

 | expr DIVIDE expr             { Binop($1, Div,   $3) } 

 | expr POW expr                { Binop($1, Pow,   $3) } 

/* Boolean expression part*/  

 | TRUE                         { BVal(True) } 

 | FALSE                        { BVal(False) } 

 | expr EQ expr                 { EExpr($1, BEqual, $3) } 

 | expr NEQ expr                { EExpr($1, BNeq, $3) } 

 | expr GT expr                 { RExpr($1, BGreater, $3) } 

 | expr GEQ expr                { RExpr($1, BGeq, $3) } 

 | expr LT expr                 { RExpr($1, BLess, $3) } 

 | expr LEQ expr                { RExpr($1, BLeq, $3) } 

 | expr AND expr                { BExpr($1, And, $3) } 

 | expr OR expr                 { BExpr($1, Or, $3) } 

 | id ASSIGN expr               { Assign($1, $3) } 

  | id LPAREN actuals_opt RPAREN { Call($1, $3) } 

  | LPAREN expr RPAREN           { Bracket($2) } 

 

actuals_opt: 

   /* nothing */ { [] } 

 | actuals_list  { List.rev $1 } 

 

actuals_list: 



Appendix A: Code Listing LSystem 
 

61 | P a g e  
 

   expr                    { [$1] } 

 | actuals_list COMMA expr { $3 :: $1 } 

 

ast.ml 

(* Primary Author: Jervis Muindi (jjm2190) *) 

 

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq | 

Pow 

type nop = NAdd | NSub | NMult | NDiv (*the four normal operators*) 

 

type bv = True | False 

type bop = And| Or  

type eop = BEqual | BNeq  

type rop = BLess | BLeq | BGreater | BGeq 

 

type mop = MTimes | MDivide | MMod (*multiplicative expr ops*) 

type aop = AAdd | ASub (*additve expr ops*) 

 

type vop = VAdd | VSub | VMult | VDiv 

type dt = StringType | DoubleType | IntType | BooleanType (*Data types in our 

language*) 

 

type fparam = FParam of dt * string (*Type to hold a Formal parameter, e.g. 

int x*) 

 

type vdecl = VDecl of dt * string * string  (*DataType, Name, Value*) 

 

type arithexpr = (*key*) 

 | ALiteral of int 

 | AId of string 

 | AFloat of float 

 

type varexpr = (*key*) 

 | VLiteral of int 

 | VId of string 

 | VFloat of float 

 | VStringLit of string 

 | VBoolLit of bool 

 | VBinop of varexpr *  vop * varexpr 

 

type expr = 

   Literal of int 

 | Float of float 

 | Boolean of bool 

 | String of string 

 | Id of string 

 | Bracket of expr 

 | Binop of expr * op * expr 

 | Assign of string * expr 

 | Call of string * expr list 

 | Noexpr 

 | BVal of bv (*boolean value : true/false*) 

 | RExpr of expr * rop * expr (*relational expresion : < <= > >=*) 
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 | EExpr of expr * eop * expr (*equality expression : == !=*) 

 | BExpr of expr * bop * expr (*boolean compound expression : && || *) 

 

type stmt = 

   Block of stmt list  

 | Expr of expr 

 (*| Decl of dt * string * string*) 

 | Return of expr 

 | If of expr * stmt * stmt 

 | For of expr * expr * expr * stmt 

 | While of expr * stmt 

 

type alphabet = 

 | Alphabet of string list 

 

type turtle_param = 

 TurtleParam of varexpr  

 

type rule = 

 | Lambda of string list (*start rule: lambda ->  production_rule *) 

 | ERule of string * string list (*Expansion rule : alphabet_symbol -> 

Expansion.*)  

 | FRule of string * string * expr list (*Function rule : name | turtle 

function name | parameters. E.g f = turtle_move(100)*) 

 | EmptyFRule of string (*the empty function rule. E.g. A = ;*)  

 

type lsystem = 

 LSystem of alphabet * rule * rule list (*Alphabet | Lambda rule | The 

other rules*) 

 

type lfunc_decl = { 

 name : string; 

 formal : fparam list; 

 rules : lsystem; 

} 

 

type func_decl = { 

 fname : string; 

 formals : fparam list; 

 locals : vdecl list; 

 body : stmt list; 

} 

 

type func = 

 | CFunc of func_decl (*compute function*) 

 | DFunc of lfunc_decl (*draw function*) 

 

type program = func list 

 

let string_of_var_dec (a,b,c) = a ^ b ^ c  

 

let string_of_vop  = function 

 | VAdd -> "+" 

 | VSub -> "-" 

 | VMult-> "*" 

 | VDiv -> "/" 
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let string_of_arithexpr  = function 

 | ALiteral(i) -> string_of_int i 

 | AId(s) -> s 

 | AFloat(f) -> string_of_float f 

 

let rec string_of_varexpr = function 

 | VLiteral(i) -> string_of_int i 

 | VId(s) -> s 

 | VFloat(f) -> string_of_float f 

 | VStringLit(s) -> s 

 | VBoolLit(b) -> string_of_bool b  

 | VBinop(v1,op,v2) -> string_of_varexpr v1 ^ " " ^ string_of_vop op ^ " 

" ^ string_of_varexpr v2   

 

let string_of_dt = function 

   StringType -> "string" 

 | DoubleType -> "double" 

 | IntType -> "int" 

 | BooleanType -> "boolean" 

 

let string_of_bop = function 

 | And -> "&&" 

 | Or -> "||" 

 

let string_of_rop = function  

 | BLess -> "<" 

 | BLeq -> "<=" 

 | BGreater -> ">" 

 | BGeq -> ">=" 

 

let string_of_eop = function 

 | BEqual -> "==" 

 | BNeq -> "!=" 

 

let string_of_bv = function  

 | True -> "true" 

 | False -> "false" 

 

let string_of_op = function 

   Add -> "+"  

 | Sub -> "-"  

 | Mult -> "*"  

 | Div -> "/" 

 | Equal -> "=="  

 | Neq -> "!=" 

 | Less -> "<"  

 | Leq -> "<="  

 | Greater -> ">"  

 | Geq -> ">="  

 | Pow -> "^" 

 

let rec string_of_expr = function 

   Literal(l) -> string_of_int l 

 | Boolean(b) -> string_of_bool b 

 | Float(f) -> string_of_float f 
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 | String(s) -> s 

 | Id(s) -> s 

 | Binop(e1, o, e2) -> 

   begin 

    match o with  

    | Pow -> "Math.pow(" ^ string_of_expr e1 ^ " , " ^ string_of_expr e2 

^ ")" 

    | _ -> string_of_expr e1 ^ " " ^  

           (match o with 

  Add -> "+"  

            | Sub -> "-"  

            | Mult -> "*"  

            | Div -> "/" 

  | Equal -> "=="  

            | Neq -> "!=" 

  | Less -> "<"  

            | Leq -> "<="  

            | Greater -> ">"  

            | Geq -> ">="  

            | Pow -> "^")   

      ^ " " ^ string_of_expr e2 

   end 

 | Assign(v, e) -> v ^ " = " ^ string_of_expr e 

 | Call(f, el) -> f ^ "(" ^ String.concat ", " (List.map string_of_expr 

el) ^ ")" 

 | Noexpr -> "" 

 | BVal(v) -> string_of_bv v  

 | RExpr(e1,o,e2) -> string_of_expr e1 ^ " " ^ string_of_rop o ^ " " ^ 

string_of_expr e2 

 | EExpr(e1,o,e2) -> string_of_expr e1 ^ " " ^ string_of_eop o ^ " " ^ 

string_of_expr e2 

 | BExpr(e1,o,e2) -> string_of_expr e1 ^ " " ^ string_of_bop o ^ " " ^ 

string_of_expr e2 

 | Bracket(e1) -> " ( " ^ string_of_expr e1 ^ " ) "  

 

let rec string_of_stmt = function 

   Block(stmts) -> "{\n" ^ String.concat "" (List.map string_of_stmt 

stmts) ^ "}\n" 

 | Expr(expr) -> string_of_expr expr ^ ";\n"; 

 | Return(expr) -> "return " ^ string_of_expr expr ^ ";\n"; 

 | If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ 

string_of_stmt s 

 | If(e, s1, s2) ->  "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt 

s1 ^ "else\n" ^ string_of_stmt s2 

 | For(e1, e2, e3, s) -> "for (" ^ string_of_expr e1  ^ " ; " ^ 

string_of_expr e2 ^ " ; " ^ string_of_expr e3  ^ ") " ^ string_of_stmt s 

 | While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s 

 

let string_of_vdecl = function  

 VDecl(dtt, nm, v) ->  string_of_dt dtt ^ " " ^ nm ^ " = " ^ v ^ ";\n" 

 

let string_of_alphabet = function 

 Alphabet(string_list) -> String.concat " " string_list 

 

let string_of_lambdarule = function 

 | Lambda(string_list) ->  "lambda -> " ^ String.concat " " string_list 
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 | _ -> ""  (*output nothing if not a lambda rule*) 

 

let string_of_lambdarule_value = function 

 |  Lambda(string_list) ->  String.concat " " string_list 

 | _ -> ""  (*output nothing if not a lambda rule*) 

 

let string_of_rule = function 

 | Lambda(string_list) ->  "lambda -> " ^ String.concat " " string_list 

 | ERule(name, string_list) -> name ^ " -> " ^ String.concat " " 

string_list ^ "\n" 

 | FRule(name, fname, params) -> name ^ " = " ^ fname ^ "(" ^ 

String.concat "," (List.map string_of_expr params)  ^ ")" ^ "\n" 

 | EmptyFRule(s) -> s ^ " = " ^ "\n" 

 

let string_of_fparam = function 

 FParam(dt,s) -> string_of_dt dt ^ " " ^ s 

 

let string_of_lsystem  = function 

 LSystem(a,s,rl) ->   string_of_alphabet a ^ "\n" ^string_of_lambdarule 

s ^ "\n" ^ String.concat "" (List.map string_of_rule rl)  

  

let string_of_dfunc (func) =  

 "Function name : " ^ func.name ^ "\n" ^  

 "Formal Parameter(s) : " ^ String.concat "," (List.map string_of_fparam 

func.formal) ^ "\n" ^ 

 "LSystem: " ^ "\n" ^ string_of_lsystem func.rules  

  

let string_of_fdecl  = function 

 | CFunc(fdecl) ->  

   "\ndef compute " ^ fdecl.fname ^ "(" ^ String.concat ", " 

(List.map string_of_fparam fdecl.formals) ^ ") {\n" ^ 

   String.concat "" (List.map string_of_vdecl fdecl.locals) ^ 

   String.concat "" (List.map string_of_stmt fdecl.body) ^ 

   "}\n" 

 | DFunc(fdecl) -> "\ndef draw " ^ fdecl.name ^ "(" ^ String.concat ", " 

(List.map string_of_fparam fdecl.formal) ^ ") {\n" ^ 

  string_of_lsystem fdecl.rules ^ "}\n" 

 

let string_of_program (funcs) = String.concat "\n" (List.map string_of_fdecl 

funcs)  

  

semantic.ml 
open Ast 

open Str 

open LSystemstd 

 

type var_table = { 

 variables : Ast.vdecl list; 

 } 

  

type env = { 

 mutable functions : func list ; 

 variables : vdecl list;   
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} 

 

(*determines if the given function exists*) 

let exists_function func env =  

 match func with 

  DFunc(func) -> begin  

   try 

     let _ = List.find ( fun(f) ->  

            match f with 

  | DFunc(f) -> f.name = func.name  

  | CFunc(f) -> f.fname = func.name) env.functions  in  

         let e = "Duplicate function name : " ^ func.name ^ "\n" in 

      (*throw error on duplicate func.*) 

                raise(Failure e) with Not_found -> false  

       end            

 | CFunc(func) -> try let _ =  

        List.find ( fun(f) ->  

          match f with 

     | DFunc(f) -> f.name = func.fname  

     | CFunc(f) -> f.fname = func.fname) env.functions  in  

            let e = "Duplicate function name : " ^ func.fname ^ "\n" in 

    (*throw error on duplicate func.*)     

         raise(Failure e) with Not_found -> false    

 

let print_function_list flist =  

 List.map(fun(f) -> 

        match f with  

      | DFunc(f) -> let nm = f.name in 

print_endline ("DFunc:" ^nm) 

      | CFunc(f) -> let nm = f.fname in 

print_endline ("CFunc:" ^nm) 

    ) flist 

 

(*Determine if a function with given name exists*) 

let exists_function_name name env =  

    try 

        let _ = List.find ( fun(f) -> match f with 

            | DFunc(f) -> f.name = name  

            | CFunc(f) -> f.fname = name 

            ) env.functions  in  

            true (*Found a function with name like that*) 

     with Not_found -> false    

 

(*Returns the function that has the given name*) 

let get_function_name name env =  

    try 

        let afunc = List.find ( fun(f) -> match f with 

            | DFunc(f) -> f.name = name  

            | CFunc(f) -> f.fname = name 

            ) env.functions  in  

            afunc (*Found a function with name like that*) 

     with Not_found -> raise(Failure("Function " ^ name ^ "has not yet been 

declared" ) ) 

 

(*Exists function when func == CFunc *) 

let cexists_function func env =  
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 try 

  let _ = List.find ( fun(f) -> match f with 

        | DFunc(f) -> f.name = func.fname  

      | CFunc(f) -> f.fname = func.fname 

      ) env.functions  in  

      let e = "Duplicate function name : " ^ 

func.fname ^ "\n" in 

             raise(Failure e) (*throw 

error on duplicate func.*) 

   with Not_found -> false    

 

 

(*Determines if a formal paramter with the given name 'fpname' exits in the 

given function*) 

let exists_formal_param func fpname = 

 match func with 

 | DFunc(func) -> false(*to be implemented*) 

 | CFunc(func) -> try 

           let _ = 

List.find( fun(fp) -> let FParam(_,cn) = fp  

             

            in cn 

= fpname  

                          

) func.formals in 

             

     true (*we're able to find a formal paramter*) 

                 with Not_found -> false (*no formal parameter found in 

the function*) 

             

      

 

(*this is for compute functions only*) 

let cexists_formal_param func fpname = 

  try 

      let _ = List.find( fun(fp) -> let FParam(_,cn) 

= fp  

         in cn = fpname  

               ) func.formals in 

         true (*we're able to 

find a formal paramter*) 

   with Not_found -> false (*no formal parameter found in the 

function*) 

 

 

(*for computing functions only*) 

let cexists_variable_decl func vname = 

   try 

    let _ = List.find( fun(fp) -> let VDecl(_,vn,_) = fp  

          in vn = vname  

              ) func.locals in 

        true (*we're able to find a 

variable*) 

     with Not_found -> false (*no variable declaration - found in the 

function*)   
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(*Determines if a variable declaration with the given name 'vname' exists in 

the given functioin*) 

let exists_variable_decl func vname = 

 match func with  

 | DFunc(func) -> false(*to be implemented*) 

 | CFunc(func) -> try 

           let _ = 

List.find( fun(fp) -> let VDecl(_,vn,_) = fp  

             

            in vn 

= vname  

                          

) func.locals in 

             

     true (*we're able to find a variable*) 

                 with Not_found -> false (*no variable declaration - 

found in the function*)   

 

 

(*this gets formal paramters for COMPUTE function*) 

let get_cfparam_type func fpname =   

 try 

    let fparam = List.find( fun(fp) -> let FParam(_,cn) = fp  

                 

     in cn = fpname  

                             ) 

func.formals in 

           let FParam(dt,_) = fparam 

          in dt (*return the data 

type*)         

  with Not_found -> raise (Failure ("Formal Parameter " ^ fpname ^ " should 

exist but was not found in compute function " ^ func.fname)) (*this shouldn't 

not happen*) 

        

(*gets the variable type - only for COMPUTE functions*)    

      

let get_var_type func vname =  

  try 

   let var = List.find( fun(v) -> let VDecl(_,vn,_) = v  

             

     in vn = vname  

                   ) func.locals in 

   let VDecl(dt,_,_) = var 

   in dt (*return the data type*) 

  with Not_found -> raise (Failure ("Variable " ^ vname ^ " should 

exist but was not found in compute function " ^ func.fname)) (*this shouldn't 

not happen*)   

             

        

 

(*Returns the type of a given variable name *) 

let get_type func name =  

 if( cexists_variable_decl func name ) (*It's a variable*) 

  then get_var_type func name  

 else  
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  if (cexists_formal_param func name) then 

   get_cfparam_type func name 

  else (*Variable has not been declared as it was not found*) 

     let e = "Variable " ^ name ^ " is being used without 

being declared in function " ^ func.fname in 

     raise (Failure e) 

   (* not needed 

    | DFunc(func) -> let e = "function get_type called on 

a draw function function " ^ func.name  ^ " which is not allowed\n" in 

             

raise (Failure e)*)  

           

 

(*Determines if the given identiifier exists*) 

let exists_id name func =  

 if( cexists_variable_decl func name ) (*It's a variable*) 

  then true  

 else  

  if (cexists_formal_param func name) then 

   true 

  else (*Variable has not been declared as it was not found*) 

   false 

 

(*determines if the given compute function collides with a number of another 

function*) 

(*let exists_CFunction func env =  

  try 

    let _ = List.find ( fun(f) -> match f with 

     | DFunc(f) -> f.name = func.fname  

     | CFunc(f) -> f.fname = func.fname 

     ) env.functions  in true (*return true on 

success*) 

   with Not_found -> print_endline "notfound\n"; false (*return 

false on failure*)   

*) 

 

  

(*see if there is a function with given name "func"*) 

let find_function func env =  

 try 

  let _ = List.find ( fun(f) -> match f with 

            | 

DFunc(f) -> f.name = func  

            | 

CFunc(f) -> f.fname = func 

  ) env.functions in true (*return true on success*) 

  with Not_found -> raise Not_found   

 

 

let dup_fparam func =  

 match func with 

  | DFunc(func) -> let length = List.length func.formal in  

                   if(length = 1) then (*must have 1 

arguments*) 

                      let _isvalid = List.map( 

                                        fun(x) -> let 
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FParam(t,_) = x in match t with 

             

         | IntType -> false 

             

         | _ -> 

raise(Failure("Formal parameter type for draw function must be an int")) 

             

          

             

         ) func.formal in false 

             else 

           

 raise(Failure("Draw function '"^ func.name ^"' must have only 1 formal 

parameters but it has " ^ string_of_int length ^ " params")) 

             

  | CFunc(func) -> let isdup f = List.fold_left( 

             

   fun c x -> 

             

    let FParam(_,my_name) = f and FParam(_,curr_name) = x 

in 

             

    if ( c = 0 && my_name = curr_name ) then c + 1    

             

     

             

    else  

             

      if ( c = 1 &&  my_name = curr_name) then 

(*found a 2nd dup match*) 

               

      let e = "Duplicate formal parameter in 

function : " ^ func.fname ^ "\n" in 

               

       raise(Failure e) (*throw error on duplicate 

formal parameter.*)  

             

      else c 

             

       

             

         ) 0 func.formals  

           in let _ = 

List.map(isdup) func.formals 

           in false  

 

(*This check for duplicate formal parametersin COMPUTE function*) 

let cdup_fparam func =  

 let isdup f = List.fold_left( 

             

   fun c x -> 

             

    let FParam(_,my_name) = f and FParam(_,curr_name) = x 

in 

             

    if ( c = 0 && my_name = curr_name ) then c + 1    
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    else  

             

      if ( c = 1 &&  my_name = curr_name) then 

(*found a 2nd dup match*) 

               

      let e = "Duplicate formal parameter in 

function : " ^ func.fname ^ "\n" in 

               

       raise(Failure e) (*throw error on duplicate 

formal parameter.*)  

             

      else c 

             

       

             

         ) 0 func.formals  

 in let _ = List.map(isdup) func.formals 

 in false 

 

(*checks if there is a duplicate variable declaration for COMPUTE functions*) 

let dup_vdecl func = 

 match func with 

 | DFunc(func) -> false 

 | CFunc(func)->    

 let isdup var = List.fold_left( 

             

    fun c x -> 

             

     let VDecl(mdt,mn,_) = var 

             

     and VDecl(tdt,tn,_) = x in  

             

     if ( c = 0 && (mn) = (tn)  ) then c + 1    

             

     

             

     else  

             

       if ( c = 1 &&  (mn) = (tn) ) then 

(*found a 2nd dup match*) 

               

           let e = 

"Duplicate variable declaration '"^ mn ^"' in compute function : " ^ 

func.fname  in 

             

          raise(Failure e) (*throw error on 

duplicate formal parameter.*)  

             

       else c 

             

        

             

     ) 0 func.locals 
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           (*check if 

the given variable decl. name has already been declared in the formal 

paramters*) 

            in let _ = 

List.map(  

             

             

 fun(x) -> List.map(  

             

             

            fun(y) -> 

let FParam(_,formal_nm) = y  

             

             

             

    and VDecl(_,varname,_) = x  

             

             

             

    in if (formal_nm = varname) then  

             

             

             

       let e = "Redeclaration of formal 

parameter '" ^ formal_nm ^"' not allowed in function : " ^ func.fname ^"\n" 

             

             

             

       in raise(Failure e) 

             

             

             

      else false  

             

             

            ) 

func.formals 

             

             ) 

func.locals 

            in  

            let _ = 

List.map(isdup) func.locals (*see if we have duplicate var names*)  

            in false  

 

let is_int s =  

 try ignore (int_of_string s); true 

 with _ -> false 

  

let is_float s =  

 try ignore (float_of_string s); true 

 with _ -> false  
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let is_letter s =      

    let regex = regexp  "[A-Za-z]" in (*Make any string that starts with a 

double quotes and ends with one*) 

    let str = "|" ^s ^"|" in  

    print_endline str; string_match regex s 0 

 

(*Function that checks if given input is a string. Used to make sure that an 

expression is indeed of type string 

It does this by just checking if the first character and the last character 

are all the same and that they equal 

a single double quote. This check is sufficient because the parse will reject 

any streams of character which do not  

make a valid string literal.*) 

let is_string s =  

 let l = String.length s in  

 let last_idx = l - 1 in  

 let first_char = String.sub s 0 1 and 

 last_char = String.sub s last_idx 1 in 

 match first_char,last_char with 

  | "\"" , "\""-> true (*check that 1st char = last char = double 

quote*)  

  | _          -> false 

   

    

(*continue from here 

let rec is_bool s =  

 match s with  

  | BVal(s) ->  

  | RExpr(s) -> 

  | EEXpr(s) -> 

  | BExpr(s) -> 

  | _ -> false         

             

             

*)          

 

 

 

let is_string_bool s =  

  match s with 

   | "true" -> true 

   | "false" -> true 

   | _ -> false 

 

(*check if variable declation is valid*) 

let valid_vdecl func = 

 match func with 

  | DFunc(func) -> false 

  | CFunc(func) ->  

 let _ = List.map( 

         fun(v) ->   

            

          let 

VDecl(dt,nm,value) = v in 
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          let e = "Invalid 

variable declaration for '" ^ nm ^ "' in compute function " ^ func.fname ^ 

"\n" in 

          let be = e ^ "The 

Only allowed values for initializing boolean values is 'true' or 'false' \n" 

           in match dt 

with 

            | 

StringType -> if (is_string value) then true 

                            

else raise (Failure e ) 

             

            | 

DoubleType -> if ( (is_float value)) then true 

             

       else raise (Failure e) 

             

        

            | 

IntType    -> if (is_int value) then true 

                            

else raise(Failure e) 

             

         

            | 

BooleanType -> if (is_string_bool value) then true 

                             

else raise (Failure be) 

             

                 ) func.locals 

                   in true  

   

 

let rec is_num func expr =  

 match expr with 

  | Literal(i) -> true 

  | Float(f) -> true 

  | Id(s) -> let dt  = get_type func s in 

        begin 

              match dt with 

          | IntType -> true 

          | DoubleType -> 

true 

          | _ -> false 

         end 

    | Binop(e1,op,e2) ->  let b1 = is_num func e1 and  

            

 b2 = is_num func e1  in 

            

 b1 && b2 

  | Call(name,expr) -> raise (Failure "TBI") (*to be implemented*) 

             

  

  | _ -> false  
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let rec get_expr_type e func   =  

 match e with 

  | String(s) -> StringType 

    | Id(s) -> get_type func s 

  | Literal(i) -> IntType 

  | Float(f) -> DoubleType 

  | Boolean(b) -> BooleanType 

  | Binop(e1,op,e2) -> let t1 = get_expr_type e1 func  and 

                       t2 = get_expr_type e2 func  in   

            begin 

             

match t1,t2 with 

             

 | DoubleType,DoubleType -> DoubleType 

             

 | DoubleType,IntType -> DoubleType (*Upconvert to double type*) 

             

 | IntType,DoubleType -> DoubleType (*Upconvert to double type*) 

             

 | IntType,IntType -> IntType 

             

 | _,_ -> raise (Failure ("Invalid Types used in a binop expression")) 

            end 

  | Assign(id,expr) -> get_expr_type expr func 

  | Call(fname,expr) -> DoubleType (*function calls return double*) 

  | BVal(b) -> BooleanType 

  | RExpr(e1,rop,e2) -> let t1 = get_expr_type e1 func and 

                        t2 = get_expr_type e2 func in 

              

begin  

             

 match t1,t2 with 

             

  | DoubleType,DoubleType -> BooleanType 

             

  | DoubleType,IntType -> BooleanType  

             

  | IntType,DoubleType -> BooleanType  

             

  | IntType,IntType -> BooleanType 

             

  | _,_ -> raise(Failure("Invalid Types used in a relational 

expression")) 

             

 end 

  | EExpr(e1,eop,e2) -> let t1 = get_expr_type e1 func and 

                        t2 = get_expr_type e2 func  in 

            

 begin  

             

 match t1,t2 with 

             

  | DoubleType,DoubleType -> BooleanType 

             

  | DoubleType,IntType -> BooleanType  
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  | IntType,DoubleType -> BooleanType  

             

  | IntType,IntType -> BooleanType 

             

  | StringType,StringType -> BooleanType (*can do string 

comparisons*) 

             

  | BooleanType,BooleanType -> BooleanType (*can compare bool 

values*) 

             

  | _,_ -> raise(Failure("Invalid Types used in a equality 

expression")) 

             

 end 

  | BExpr(e1,bop,e2) -> let t1 = get_expr_type e1 func and 

                        t2 = get_expr_type e2 func  in 

            

 begin 

             

 match t1,t2 with 

             

  | BooleanType,BooleanType -> BooleanType 

             

  | _,_ -> raise(Failure("Invalid Types used in a boolean compound 

expression")) 

            

 end 

   | _ -> IntType (*should not happen - added this to turn off compiler 

warnings about incomplete matching for Noexpr*) 

 

 

                         

(*Checks if the given expression is a valid  assignment / call expression*) 

let is_assign_call func expr =  

 match expr with  

  | Assign(_,_) -> true 

  | Call(_,_) -> true 

  | _ -> false 

 

 

 

 

(*Makes sure that the given arguments in a function call match the function 

signature*) 

(*fname of function being called*) 

(*exprlist - list of expr in funcation call*) 

(*cfucn- compute function*) 

(*env - the enviroment*) 

let check_types fname exprlist cfunc env = 

  let func = get_function_name fname env in 

 begin 

  

  match func with 

      | DFunc(func) -> 0 (*still to be implemented*) 

      | CFunc(func) ->  
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                      let arg_types = List.map(fun(e) -> get_expr_type e 

cfunc) exprlist in  

                        if((List.length arg_types) != (List.length 

func.formals) ) then (*number of args don't match up*) 

            

 raise(Failure("Number of arguments in a function call don't match up in 

compute function " ^ func.fname)) 

            else 

              

let check_arg c arg_type = (*c is the counter, arg_type is type of actual 

parameters. meant to be used in the list.foldleft *) 

             

      let formal_param = List.nth func.formals c in 

             

    let FParam(formal_type,_) = formal_param in   

     

             

    begin  

             

    match formal_type,arg_type with  

             

    | DoubleType, DoubleType -> c + 1    

                     

                        | 

DoubleType, IntType -> c + 1         

          

             

    | IntType, IntType -> c + 1 

             

    | StringType, StringType -> c+1 

             

    | BooleanType, BooleanType -> c+1  

             

    | _,_ -> raise(Failure("Types don't match in call 

expression " ^ fname ^ " in the compute function " ^ cfunc.fname))  

                   

end 

            

 in   

              

List.fold_left (check_arg) 0 arg_types       

     

  end 

 

let rec valid_expr (func : Ast.func_decl) expr env =  

  

 match expr with 

  | Literal(i) -> true  

  | Float(f) ->  true 

  | Boolean(b) -> true   

  | String(s) -> true 

  | Id(s) -> if(exists_id s func) then true else raise( Failure 

("Undeclared identifier " ^ s ^ " is used" )) 

  | Binop(e1,op,e2) -> let r1 = is_num func e1  

             and 

r2 = is_num func e2 in 
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             r1 

&& r2 

  | Assign(id, e1) -> if(exists_id id func) then 

             

 let dt = get_type func id and  

             

 _ = valid_expr func e1 env and  

             

 exprtype = get_expr_type e1 func  

             

 in match dt,exprtype with 

             

  | StringType,StringType -> true 

             

  | IntType,IntType -> true 

             

  | DoubleType,DoubleType -> true 

             

  | DoubleType,IntType -> true (*allow int to double conversion*) 

             

  | BooleanType,BooleanType -> true 

             

  | IntType,DoubleType -> raise(Failure ("Cannot assign a double to 

an int")) 

             

  | _,_ -> raise(Failure ("DataTypes do not match up in an 

assignment expression to variable " ^ id)) 

             

  

             else 

            

 raise( Failure ("Undeclared identifier " ^ id ^ " is used" )) 

              

     (*Call check has not yet been fully implemented*)    

          

  | Call(fname, exprlist) ->  if(exists_function_name fname env) 

then 

             

       let _has_valid_exprs = List.map(fun(e) -> valid_expr func e 

env) exprlist in  

             

     let _checktypes = check_types fname exprlist func 

env (*check that the types match up otherwise throws an error *)  

             

     in 

             

     true  

                            else  

             

       (if List.mem fname LSystemstd.func_names then (*It's a 

standard library function call*) 

             

       true (*STILL TO DO:  checking of std lib functions *) 

             

       else 
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        raise( Failure ("Undefined function : " ^ fname ^ " is 

used" ))  

             

       )  

  | BVal(b) -> true 

  | RExpr(e1,rop,e2) -> let t1 = get_expr_type e1 func and 

                        t2 = get_expr_type e2 func in 

            

 begin 

             

 match t1,t2 with 

             

  | DoubleType,DoubleType -> true 

             

  | DoubleType,IntType -> true 

             

  | IntType,IntType -> true 

             

  | IntType,DoubleType -> true 

             

  | _,_ -> raise(Failure("Invalid Types used in a relational 

expression")) 

            

 end 

  | EExpr(e1,eop,e2) -> let t1 = get_expr_type e1 func and 

                        t2 = get_expr_type e2 func in 

            

 begin 

             

 match t1,t2 with 

             

  | DoubleType,DoubleType -> true 

             

  | DoubleType,IntType -> true 

             

  | IntType,IntType -> true 

             

  | IntType,DoubleType -> true 

             

  | StringType,StringType -> true 

             

  | BooleanType,BooleanType -> true 

             

  | _,_ -> raise(Failure("Invalid Types used in an equality 

expression")) 

            

 end 

  | BExpr(e1,bop,e2) -> let t1 = get_expr_type e1 func and 

                        t2 = get_expr_type e2 func in 

            

 begin 

             

 match t1,t2 with 

             

  | BooleanType,BooleanType -> true 
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  | _,_ -> raise(Failure("Invalid Types used in a boolean compound 

expression")) 

            

 end 

   | _ -> false(*should not happen - added this to turn off compiler 

warnings about incomplete matching for Noexpr*) 

 

 

(*Returns alphabet list from the draw function*) 

let get_alphabet_list func = 

 let LSystem(alphabet,lambda,rlist) = func.rules in 

 let Alphabet(alphabet_list) = alphabet in 

 alphabet_list 

 

(*Check to make sure that alphabet has no repeating letters*) 

let valid_alphabet alphabet func = 

     let Alphabet(alphabet_list) = alphabet in   

     let isdup letter = List.fold_left( 

                   fun c curr_letter ->  

                    

if ( c = 0 && letter = curr_letter) then c + 1                                                                     

                                else  

                                   if ( c = 1 &&  letter = curr_letter) then 

(*found a 2nd duplicate match*) 

                                      let e = "Duplicate alphabet letters '" 

^ letter ^ "' in function : " ^ func.name ^ "\n" in 

                                      raise(Failure e)   

                                   else c 

                ) 0 alphabet_list 

   in  

   let _ensure_no_dups  = List.map(isdup) alphabet_list in 

   let valid_letters = List.for_all (is_letter) alphabet_list 

in 

   match valid_letters with 

    | true -> true 

    | false -> raise(Failure("Invalid letters used in 

alphabet of drawing function " ^ func.name))  

  

(*Check if given symbol exists in alphabet*) 

let exists_in_alphabet letter alphabet_list  = 

 try 

    let _ = List.find (fun(x) -> x = letter ) alphabet_list in 

   true 

 with Not_found -> false 

 

(*check if given symbol is in the standary library symbol of 'l r f'*) 

let is_std_symbol s = 

 try 

       let _ = List.find (fun(x) -> x = s ) LSystemstd.std_symbols in 

         true 

    with Not_found -> false  

    

(*Check if the given letter exists in alphabet or is part of the 'l r f' 

standard library symbols*)  

let valid_symbol letter func =  

 let in_alphabet = exists_in_alphabet letter (get_alphabet_list func) 
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and 

 is_std_symbol = is_std_symbol letter in 

 match in_alphabet,is_std_symbol with 

  | true,_ -> true 

  | _,true -> true 

  | false,false -> false 

   

         

let valid_rule rule func = 

    match rule with 

        | Lambda(string_list) -> let ok = List.for_all(fun(x) -> valid_symbol 

x func) string_list in 

                             if(ok) then 

             

    let _ = print_endline "lambda OKAY" in true 

             

   else 

             

    raise(Failure("Lambda rule has an invalid character 

that has not been declared in the alphabet")) 

        | ERule(name, string_list) -> if(valid_symbol name func) then 

             

        let ok = List.for_all(fun(x) 

-> valid_symbol x func) string_list in   

             

        if(ok) then 

             

         true 

             

         else  

             

         raise(Failure("ERule 

'"^ name ^"' has an invalid character that has not been declared in the 

alphabet")) 

                                else 

             

        raise(Failure("ERule symbol '"^ name 

^"' is not in the alphabet")) 

     | FRule(name, fname,string_list) ->true (*to do*) 

    | EmptyFRule(name) -> if (valid_symbol name func) 

then 

                            true 

                        else  

             

     raise(Failure("Empty FRule symbol '"^ name ^"' is not in the 

alphabet")) 

 

 

(*validates the lsystem in a draw funciton*) 

let validate_lsystem func env =  

 let LSystem(alphabet,lambda,rlist) = func.rules in 

 let _validate_alphabet = valid_alphabet alphabet func in 

 let _valid_lambda = valid_rule lambda func in 

 let _valid_rules = List.map(fun(x) -> valid_rule x func ) rlist 

 in 

 true 
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(*Checks the body of a compute function *) 

let valid_body func  env = 

 match func with 

  | DFunc(func) -> validate_lsystem func env 

  | CFunc(func) ->    

      let rec check_stmt st =  

             

 begin            

  

             

  match st with 

             

   (*the 'block' will only occur in if and while condition 

loop. *) 

             

   | Block(st_list) -> let _ = List.map(fun(x) -> check_stmt 

x) st_list (*Check statements in the block. Err will be thrown for an invalid 

stmt*)  

             

                in true  

             

   | Expr(st) -> let vldexpr = valid_expr func st env and 

(*make sure the expression is valid expression*) 

             

          assign_call  = 

is_assign_call func st in 

             

          begin  

             

           match 

vldexpr,assign_call with (*The expression MUST be valid and also an 

assignment/call expression. Can't have '1;' as a stmt expr alone *) 

             

            | 

true,true -> true 

             

            | 

true,false -> raise(Failure ("Invalid expression (No var assignment) in 

function " ^func.fname ^ "\n")) 

             

            | 

false,_ -> raise(Failure ("Invalid assignment expression in function " 

^func.fname ^ "\n")) 

             

          end    

             

        

             

   | Return(st) -> let ret = get_expr_type st func in  

             

             

   begin  

             

             

    match ret with 
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     | DoubleType -> true 

             

             

     | IntType -> true 

             

             

     | _ -> raise(Failure("return type is not double 

in compute function " ^ func.fname ^ ". It is of type :" ^ (string_of_dt 

ret))) 

             

             

   end 

             

   | If(predicate,stmt1,stmt2) -> let pred_type = 

get_expr_type predicate func and  

             

             

       ve1 = check_stmt stmt1 and 

             

             

       ve2 = check_stmt stmt2 in 

             

             

   let _vpred = (*Check predicate*)   

             

             

        begin 

             

             

         match pred_type with 

             

             

         | BooleanType -> true 

             

             

         | _ -> 

raise(Failure("predicate expression must be a valid boolean expression that 

evaluates to true/false")) 

             

             

        end 

             

             

   in 

             

             

   begin match ve1,ve2 with 

             

             

   | true, true -> true 

             

             

   | _ , _ -> raise(Failure("Invalid expression used in if 

statement in compute function " ^ func.fname ^ "\n")) 
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   end           

                            

             

   | For(_,_,_,_) -> let e = "For loop are not allowed in 

function" ^ func.fname ^ "\n" in 

             

              

 raise (Failure e) (*don't have to worrty about this case b'se parser 

will give parse error for 'for loops'.*) 

             

   | While(pred,stmts) -> let isvalid = check_stmt stmts in 

(*need to test*) 

                                                                    begin  

             

             

        match isvalid with 

             

             

         | true -> true 

             

             

         | false ->  raise 

(Failure ("Invalid statement found inside while loop in compute function " 

^func.fname ^"\n")) 

                                                                    end 

             

 end  

           in  

          let _ = 

List.map(check_stmt) func.body  

          in true  

 

 

(*Check a Compute Function. *) 

(* The type of function 'f' passed however should be of type *) 

(* Ast.func This is so that we can easily add functions to environment*) 

(* and avoid having fields for Cfunctions and Dfunctions separately. *) 

let check_cfunc f env =  

  

 let dup_fname = exists_function f env    

 in 

 let dup_formals = dup_fparam f 

 in  

 let vlocals = (not (dup_vdecl f)) && (valid_vdecl f) (*make sure that 

we've no dup variable names, and data types match up*) 

 in 

 let vbody = valid_body f env   

 in  

 let _ = env.functions <- (f) :: env.functions (*add function name to 

environment *) 

 in (not dup_fname) && (not dup_formals) && vlocals && vbody 
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let check_dfunc f env =  

 let dup_fname = exists_function f env in 

 let dup_formals = dup_fparam f in 

 let vbody = valid_body f env in 

 let _ = env.functions <- (f) :: env.functions (*add function name to 

environment *) 

 in 

 (not dup_fname) && (not dup_formals) && vbody 

 

let valid_func env f =  match f with 

   CFunc(f) -> print_endline ("checking cf:" ^ f.fname); let afunc = 

CFunc(f) in check_cfunc afunc env    

 | DFunc(f) -> print_endline ("checking df:"^f.name); let afunc = 

DFunc(f) in check_dfunc afunc env   

   

 

(* 

let valid_func a b = match b with 

 | CFunc(x) ->  print_endline "hello\n"*) 

 

 

(*Checks to make sure that the main function exists and is a compute 

function*) 

let exists_main env = 

 if(exists_function_name "main" env) then 

  let func_type = get_function_name "main" env in  

  match func_type with 

   | CFunc(func_type) -> true 

    | DFunc(func_type) -> raise(Failure("main function must be a 

compute function. ")) 

 else  

  raise(Failure("Compute function 'main' does not exist !"))  

 

let check_program flist = 

 let (environment : env) = { functions = [] ; variables = [] } in 

 let _dovalidation = List.map ( fun(f) -> valid_func environment f) 

flist in (*Do the semantic analysis*) 

 let _mainexists = exists_main environment (*ensure that a main function 

exists*)  

  in 

   "\nSuccess !\n"  

 

  

 

compile.ml 
(* Primary Author: Ethan Hann (eh2413) *) 

 

open Ast 

open LSystemstd 

open Str 

 

exception RedeclarationOfStandardFunctionNotAllowedError 
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module StringMap = Map.Make(String);; 

    

let get_prod fname = function 

   Lambda(symbols) -> "  " ^ fname ^ ".addProduction(\"lambda\", 

\"" ^ (String.concat "," symbols) ^ "\");\n" 

 | ERule(name, symbols) -> "  " ^ fname ^ ".addProduction(\"" ^ 

name ^ "\", \"" ^ (String.concat "," symbols) ^ "\");\n" 

 | _ -> "" 

 

let get_term fname = function  

   FRule(symbol, command, param) -> "  " ^ fname ^ 

".addTerminal(\"" ^ symbol ^ "\", new Command(" ^ (String.uppercase command) 

^ ", " ^ (string_of_expr (List.hd param)) ^ "));\n"  

 | _ -> "" 

    

let translate fname rule = match rule with 

   Lambda(_) -> get_prod fname rule 

 | ERule(_,_) -> get_prod fname rule 

 | FRule(_,_,_) -> get_term fname rule 

 | _ -> "" 

    

let draw_fdecl fdecl = 

 if List.mem fdecl.name LSystemstd.func_names then  

  raise RedeclarationOfStandardFunctionNotAllowedError 

 else 

  let fname = fdecl.name in 

   let fun_sig = "  Function " ^ fname ^ " = new 

Function(\"" ^ fname ^ "\");\n" in 

    let lsys = fdecl.rules in match lsys with 

     LSystem(alphabet, lambda, rules) -> fun_sig ^ 

(translate fname lambda) ^ (String.concat "" (List.map (function rule -> 

translate fname rule) rules)) 

 

let translate_compute_fdecl fdecl = 

 if List.mem fdecl.fname LSystemstd.func_names then  

  raise RedeclarationOfStandardFunctionNotAllowedError 

 else 

  let fun_sig = 

   match fdecl.fname with 

     "main" -> LSystemstd.std_render_signature 

   | _ -> " public double " ^ fdecl.fname ^ "(" ^ 

String.concat ", " (List.map string_of_fparam fdecl.formals) ^ "){\n" in 

   fun_sig ^ "  " ^ 

    String.concat "  " (List.map string_of_vdecl 

fdecl.locals) ^ 

    String.concat "  " (List.map string_of_stmt 

fdecl.body) ^ 

    " }\n" 

 

(* Call the appropriate translation function depending on type of function. 

*) 

let translate_fdecl = function 

  CFunc(fdecl) -> translate_compute_fdecl fdecl 

| DFunc(fdecl) -> draw_fdecl fdecl 

 

let get_dfuncs = function DFunc(fdecl) -> draw_fdecl fdecl | _ -> "" 
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let get_cfuncs = function CFunc(fdecl) -> translate_compute_fdecl fdecl | _ -

> "" 

 

let get_dcalls = function DFunc(fdecl) -> let name = fdecl.name in "

 public void " ^ name ^ "(int depth){\n" ^ "  draw(\"" ^ name ^ 

"\", depth);\n }\n" | _ -> "" 

    

let translate funcs prog_name verbose testmode = 

 let out_chan = open_out (prog_name ^ ".java") in 

  let translated_prog =  

   LSystemstd.std_turtle1 ^ (if testmode then "true;" else 

"false;") ^ LSystemstd.std_turtle2 ^ prog_name ^ LSystemstd.std_turtle3 ^ 

   "public class " ^ prog_name ^ " extends Turtle {\n" ^ 

global_replace (Str.regexp "CLASSNAME") prog_name LSystemstd.std_main ^  

   " public " ^ prog_name ^ "(){\n" ^ String.concat "" 

(List.map get_dfuncs funcs) ^ "  execute();\n  scale(1);\n

 }\n" ^  

   String.concat "" (List.map get_cfuncs funcs) ^ 

   String.concat "" (List.map get_dcalls funcs) ^ "}\n" 

  in  

   let proc_status = ignore(Printf.fprintf out_chan "%s" 

translated_prog);  

    close_out out_chan;  

    Sys.command (Printf.sprintf "javac %s.java" 

prog_name) in 

     match proc_status with 

       0 -> if verbose  

          then 

translated_prog ^ "\nCompilation successful\n"  

          else "Compilation 

successful\n" 

     | _ -> "\nCompilation of Java bytecode 

unsuccessful!\n" ^ 

       Printf.sprintf "Javac Process 

Return Code: %i\n" proc_status ^ 

       Printf.sprintf "Compilation 

Command: javac %s.java\n" prog_name 

 

lsystemstd.ml 
(* Primary Author: Timothy Sun (ts2578) *) 

 

(* I'm going to say that most of the Java code's mine. :P -Tim *) 

 

(* Standard java functions. *) 

let std_main = " public static void main(String[] args){ 

  JFrame j = new JFrame(); 

  CLASSNAME cn = new CLASSNAME(); 

  JScrollPane jsp = new JScrollPane(cn.jta); 

  jsp.setPreferredSize(new Dimension(DEFAULT+2,100)); 

  j.add(cn, BorderLayout.CENTER); 

  j.add(jsp, BorderLayout.PAGE_END); 
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  j.pack(); 

  j.setTitle(\"L-System: CLASSNAME\"); 

  j.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  j.setVisible(true);   

 } 

" 

 

let std_render_signature = " public void execute(){\n" 

   

(* Standard Turtle functions for drawing. *) 

let std_turtle1 = 

"import java.awt.*; 

import javax.swing.*; 

import java.util.*; 

import java.io.*; 

import java.awt.image.BufferedImage; 

class Turtle extends JPanel { 

 public static final int EMPTY = -1; 

 public static final int FORWARD = 0; 

 public static final int TURN = 1; 

 public static final int DOWN = 2; 

 public static final int UP = 3; 

 public static final int SETX = 4; 

 public static final int SETY = 5; 

 public static boolean testing = " 

 

let std_turtle2 = " 

 public static int DEFAULT = testing ? 100 : 400; 

 private double x = 0; 

 private double y = 0; 

 private int height; 

 private int width; 

 public JTextArea jta; 

 private double angle; 

 private boolean down; 

 private BufferedImage bi; 

 private ArrayList<double[]> lines; 

 public HashMap<String, Function> functions; 

 public Turtle(){ 

  this(DEFAULT+2,DEFAULT+2,0); 

 } 

 public Turtle(int w, int h, double angle){ 

  setPreferredSize(new Dimension(w,h)); 

  height = h; 

  width = w; 

  this.angle = angle; 

  this.down = true; 

  jta = new JTextArea(5,20); 

  jta.setEditable(false); 

  setDoubleBuffered(true); 

  lines = new ArrayList<double[]>(); 

  functions = new HashMap<String, Function>(); 

 } 

 public class Function { 

  public Function(String name){ 

   functions.put(name, this); 
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   terms = new HashMap<String, Command>(); 

   prods = new HashMap<String, String[]>(); 

   terms.put(\"f\", new Command(FORWARD,1)); 

   terms.put(\"l\", new Command(TURN,-90)); 

   terms.put(\"r\", new Command(TURN,90)); 

  } 

  public void addTerminal(String symbol, Command command){ 

   terms.put(symbol, command); 

  } 

  public void addProduction(String symbol, String expansion){ 

   prods.put(symbol, expansion.split(\",\")); 

  } 

  public boolean hasTerminal(String symbol){ 

   return terms.containsKey(symbol); 

  } 

  public boolean hasProduction(String symbol){ 

   return prods.containsKey(symbol); 

  } 

  public Command getTerminal(String symbol){ 

   return terms.get(symbol); 

  } 

  public String[] getProduction(String symbol){ 

   return prods.get(symbol); 

  } 

  HashMap<String, Command> terms; 

  HashMap<String, String[]> prods; 

 } 

 public class Command { 

  public Command(){ 

   this(EMPTY); 

  } 

  public Command(int command){ 

   this(command, 0); 

  } 

  public Command(int command, int param){ 

   this.command = command; 

   this.param = param; 

  } 

  int command; 

  double param; 

 } 

 public void turtle(Command c){ 

  switch (c.command){ 

   case FORWARD: forward(c.param); break; 

   case TURN: turn(c.param); break; 

   case DOWN: down(); break; 

   case UP: up(); break; 

   case SETX: setX(c.param); break; 

   case SETY: setY(c.param); break; 

   default: break; 

  } 

 } 

 public double[] getDim(){ 

  double minx = Double.MAX_VALUE, miny = Double.MAX_VALUE; 

  for (double[] line : lines){ 

   if (minx > line[0] || minx > line[2]) 
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    minx = Math.min(line[0],line[2]); 

   if (miny > line[1] || miny > line[3]) 

    miny = Math.min(line[1],line[3]); 

  } 

  for (double[] line : lines){ 

   line[0] -= minx; 

   line[1] -= miny; 

   line[2] -= minx; 

   line[3] -= miny; 

  } 

  double maxx = Double.MIN_VALUE, maxy = Double.MIN_VALUE; 

  for (double[] line : lines){ 

   if (maxx < line[0] || maxx < line[2]) 

    maxx = Math.max(line[0],line[2]); 

   if (maxy < line[1] || maxy < line[3]) 

    maxy = Math.max(line[1],line[3]); 

  } 

  return new double[]{maxx+1, maxy+1}; 

 } 

 public void scale(double factor){ 

  double[] dim = getDim(); 

  double trueScale = factor*Math.min(width/dim[0],height/dim[1]); 

  bi = new BufferedImage(width+1, height+1, 

BufferedImage.TYPE_INT_RGB); 

  Graphics g = bi.getGraphics(); 

  g.setColor(Color.WHITE); 

  g.fillRect(0, 0, width, height); 

  g.setColor(Color.BLACK); 

  for (double[] line : lines) 

   g.drawLine((int)(line[0]*trueScale), 

(int)(line[1]*trueScale), (int)(line[2]*trueScale), 

(int)(line[3]*trueScale)); 

  if (testing){ 

   try { 

    String output = \"\"; 

    for (int x = 0; x < width; x++){ 

     for (int y = 0; y < height; y++) 

      output += bi.getRGB(x,y) == -1 ? \"1\" : 

\"0\"; 

     output += \"\\n\"; 

    } 

    PrintWriter pw = new PrintWriter(new File(\"" 

 

let std_turtle3 = 

".txt\")); 

    pw.write(output); 

    pw.close(); 

   } 

   catch (Exception e){ e.printStackTrace(); } 

   System.exit(1); 

  } 

 } 

 public void paintComponent(Graphics g){ 

  if (height != getHeight() || width != getWidth()){ 

   height = getHeight(); 

   width = getWidth(); 
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   scale(1); 

  } 

  super.paintComponent(g); 

  g.drawImage(bi, 1, 1, Color.WHITE, this); 

 } 

 public void draw(String name, int depth){ 

  draw(functions.get(name), depth, \"lambda\"); 

 } 

 public void draw(Function f, int depth, String symbol){ 

  if (depth == -1){ 

   if (f.hasTerminal(symbol)) 

    turtle(f.getTerminal(symbol)); 

  } 

  else { 

   String[] production = f.getProduction(symbol); 

   for (String term : production){ 

    if (f.hasProduction(term)) 

     draw(f, depth-1, term); 

    else if (f.hasTerminal(term)) 

     turtle(f.getTerminal(term)); 

   } 

  } 

 } 

 public void down(){ 

  down = true; 

 } 

 public void up(){ 

  down = false; 

 } 

 public void forward(double t){ 

  t = t * 10; 

  double nx = x + Math.cos(angle)*t; 

  double ny = y + Math.sin(angle)*t; 

  if (down) 

   lines.add(new double[]{x, y, nx, ny}); 

  x = nx; 

  y = ny; 

 } 

 public void turn(double deg){ 

  angle += deg*Math.PI/180.0; 

 }   

 public void setX(double x){ 

  this.x = x; 

 } 

 public void setY(double y){ 

  this.y = y; 

 } 

 public void print(String args){ 

  jta.append(args); 

  if (testing) System.out.println(args); 

 } 

 public void print(int args){ 

  print(args+\"\"); 

 } 

 public void print(double args){ 

  print(args+\"\"); 
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 } 

 public void print(boolean args){ 

  print(args+\"\"); 

 } 

} 

" 

 

(* A string list of reserved function names in the standard library. *) 

let func_names = ["print"; "Turtle"; "down"; "up"; "forward"; "turn"; 

"paintComponent"; "resetPosition"; "setX"; "setY"] 

let std_symbols = ["r"; "l"; "f"] (*Reserved symbols in draw functions*) 

let std_lfunc = ["down"; "up"; "turn"; "forward"; "setX"; "setY"] (*Standard 

drawing functions callable from draw/compute functions*) 

Makefile 

# Primary Author: Jervis Muindi 

OBJS = ast.cmo parser.cmo scanner.cmo lsystemstd.cmo semantic.cmo compile.cmo 

lsystem.cmo  

 

TESTS = \ 

print 

 

TARFILES = Makefile testall.sh scanner.mll parser.mly \ 

 ast.ml compile.ml lsystem.ml lsystemstd.ml \ 

 $(TESTS:%=tests/test-%.mc) \ 

 $(TESTS:%=tests/test-%.out) 

 

lsystem : $(OBJS) 

 ocamlc str.cma unix.cma -o lsystem $(OBJS)  

 

.PHONY : test 

test : lsystem testall.sh 

 ./testall.sh 

 

scanner.ml : scanner.mll 

 ocamllex scanner.mll 

 

parser.ml parser.mli : parser.mly 

 ocamlyacc parser.mly 

 

%.cmo : %.ml 

 ocamlc -c $< 

 

%.cmi : %.mli 

 ocamlc -c $< 

 

lsystem.tar.gz : $(TARFILES) 

 cd .. && tar czf lsystem/lsystem.tar.gz $(TARFILES:%=lsystem/%) 

 

.PHONY : clean 

clean : 

 rm -f parser.ml parser.mli scanner.ml testall.log \ 

 *.cmo *.cmi *.out *.diff *.java *.class *.txt lsystem 
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# Generated by ocamldep *.ml *.mli 

ast.cmo:  

ast.cmx:  

compile.cmo: lsystemstd.cmo ast.cmo  

compile.cmx: lsystemstd.cmx ast.cmx  

lsystem.cmo: semantic.cmo scanner.cmo parser.cmi compile.cmo ast.cmo  

lsystem.cmx: semantic.cmx scanner.cmx parser.cmx compile.cmx ast.cmx  

lsystemstd.cmo:  

lsystemstd.cmx:  

parser.cmo: ast.cmo parser.cmi  

parser.cmx: ast.cmx parser.cmi  

scanner.cmo: parser.cmi  

scanner.cmx: parser.cmx  

semantic.cmo: lsystemstd.cmo ast.cmo  

semantic.cmx: lsystemstd.cmx ast.cmx  

parser.cmi: ast.cmo 

 

test.sh 

#!/bin/bash 

# 

# Primary Author: Michael Eng (mse2124) 

# 

#Run this file with the command: 

#bash test.sh 

# 

#Three phases: Compiles and runs computational test files in Test/, attempts 

to compile erroneous test files in Test/Semantic, and compiles, runs, then 

validates image output data for test files in Test/Draw. 

################################ 

 

make 

FILES="Test/*.ls" 

ACTION="-c" 

TESTACTION="-t" 

EXECUTABLE="./lsystem" 

finalarr=() 

echo "---------" 

echo "Stage 1: Compiling computational programs in Test directory to Java" 

echo "---------" 

arr=() 

for f in $FILES #Iterate through Test/, compile each 

do  

 #shortname= ${f:5} 

 noex=${f%.ls} 

 shortname=${noex:5} 

 echo -ne "Compiling $shortname.ls..." #-ne means no newline 

 $EXECUTABLE $ACTION $f $TESTACTION 

 wait 

 if [ -e "$shortname.java" ] 

 then 

  echo "" 

 else 
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  arr+=($f) 

  finalarr+=($f) 

  #echo "Adding $shortname to array" 

 fi 

done 

fails=${#arr[@]} 

if [ $fails != 0 ] 

then 

 echo "${#arr[@]} test file(s) did not compile properly:" #Output list 

of files that did not compile to Java as expected 

 for var in "${arr[@]}" 

  do 

  echo "${var}" 

  done 

else 

 echo "All test files compiled properly to Java." 

fi 

 

#################################################### 

#Check that each output java file has a .class file# 

#################################################### 

echo "--------" 

echo "Stage 2: Checking that each Java file has a corresponding class file" 

echo "--------" 

FILESF="./*.java" #Change to (pwd)/*.java later? 

ACTION="javac " 

arr2=() 

for f in $FILESF 

do 

 shortname=${f:2} 

 noex=${shortname%.java} 

 echo -ne "Checking that $shortname has a corresponding .class file- " 

 #$ACTION $shortname 

 if [ -e "$noex.class" ] 

 then 

  echo "$noex.class exists" 

 else 

  arr2+=($f) 

  finalarr+=($f) 

  echo "Error compiling $shortname" 

 fi 

done 

fails2=${#arr2[@]} #output list of files that did not compile from Java to 

class files as expected 

if [ $fails2 != 0 ] 

then 

 echo "${#arr2[@]} java file(s) did not compile properly:" 

 for var in "${arr2[@]}" 

  do 

  echo "${var}" 

  done 

else 

 echo "All compiled ls files were compiled to Java class files." 

fi 
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#############################################################################

############# 

#Execute script to start comparing compute test .class files to expected 

output for each.# 

#############################################################################

############# 

echo "--------" 

echo "Stage 3: Executing computational java files and comparing against 

expected output:" 

echo "--------" 

declare -A expected 

arr3=() 

while read line 

do 

 IFS='~' read -ra ADDR <<< "$line" 

# expected["${ADDR[0]}"]="${ADDR[1]}" 

 expected+=( ["${ADDR[0]}"]="${ADDR[1]}" ) 

done < Test/expected.txt 

for x in "${!expected[@]}" 

do 

 #echo "$x: ${expected["$x"]}" 

 if [ -e "$x.class" ] 

 then 

  compare=${expected["$x"]} 

  if [ $x = "longprint" ] #Hacky fix.  Couldn't embed the newlines 

into a line of text in the expected.txt file. 

  then 

   compare=" 

n 

n 

n 

n 

n 

s 

w 

e 

r 

t 

y 

Hello world" 

  fi 

  echo "----" 

  echo "Running $x, expected output is $compare" 

  actual=`java $x` 

  wait 

  rm -f $x.txt 

  if [ "$actual" != "$compare" ] 

  then 

   echo "Error comparing $x: $actual != $compare" 

   arr3+=(Test/$x.ls) 

   finalarr+=($x) 

  else 

   echo "Match for $x: $actual = $compare" 

  fi 

 else 

  echo "$x was not successfully compiled into Java byte code, 
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skipping it..." #Files in this state were already added to the report in 

Stage 2 

 fi 

done 

 

 

fails3=${#arr3[@]} #Output list of files that did not execute properly 

if [ $fails3 != 0 ] 

then 

 echo "${#arr3[@]} java file(s) did not execute properly or did not 

compile from Java into Java bytecode:" 

 for var in "${arr3[@]}" 

  do 

  echo "${var}" 

  done 

else 

 echo "All computational test files executed as expected." 

fi 

 

#############################################################################

########################################################## 

#Attempt to compile files in Semantic subdirectory.  They should all generate 

compiler errors and not create corresponding java files.# 

#############################################################################

########################################################## 

SEMANTICFILES="Test/Semantic/*.ls" 

echo "" 

echo "" 

echo "--------" 

echo "Stage 4: Compiling semantic test files, these should all cause compiler 

errors and fail to create Java code:" 

echo "--------" 

SEMANTICACTION="./lsystem -c" 

semanticarr=() 

for s in $SEMANTICFILES #Iterate through Test/, compile each 

do  

 #shortname= ${f:5} 

 noex=${s%.ls} 

 shortname=${noex:14} 

 echo -ne "Compiling $shortname.ls..." #-ne means no newline 

 $SEMANTICACTION $s 

 wait 

 if [ -e "$shortname.java" ] 

 then 

  echo "" 

  echo "$shortname.java exists- test program did not fail as 

expected" 

  echo "" 

  semanticarr+=($s) 

  finalarr+=($s) 

 else 

  echo "Compiler error encountered, program fails as expected." 

  #echo "Adding $shortname to array" 

 fi 

 echo "" 

done 
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semanticfails=${#semanticarr[@]} #Output list of files that did not fail to 

compile as expected 

if [ $semanticfails != 0 ] 

then 

 echo "${#semanticarr[@]} test file(s) did not fail properly:" 

 for var in "${semanticarr[@]}" 

  do 

  echo "${var}" 

  done 

else 

 echo "All files failed as expected." 

fi 

 

#Clean out generated java and class files 

CLEAN="rm *.java" 

$CLEAN 

CLEAN="rm *.class" 

$CLEAN 

 

######################################################################## 

#Compile files in Draw subdirectory.      

# 

#Then run each, get its resulting image bitstring.        

# 

#Then compare to an expected bitstring (get from file in subdirectory).# 

######################################################################## 

echo "----------" 

echo "Stage 5: Compile and run drawing test classes, compare resulting image 

data to expected results" 

echo "----------" 

FILESF="Test/Draw/*.ls" 

arr5=() 

arr6=() 

arr7=() 

for f in $FILESF 

do 

 shortname=${f:10} 

 noex=${shortname%.ls} 

 echo "Compiling $shortname..." 

 ./lsystem -c $f -t 

 wait 

 if [ -e "$noex.java" ] 

 then 

  echo "$shortname compiled successfully to Java file" 

 else 

  echo "$shortname failed to compile to a Java file" 

  arr5+=($f) 

 fi 

 if [ -e "$noex.class" ] 

 then 

  echo "$shortname compiled successfully to an executable class 

file" 

 else 

  echo "$shortname failed to compile into a class file" 

  arr6+=($f) 

 fi 
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 java $noex 

 wait 

 if [ -e "$noex.txt" ] 

 then 

  echo "Image bitstring output file generated, comparing to 

expected result..." 

  DIFF=$(diff -q $noex.txt Test/Draw/Expected/$noex.txt) 

  wait 

  if [ "$DIFF" != "" ] 

  then 

   echo "Error- differences found in image data.  Recompile 

$noex.ls without the -t flag and run to visually verify correctness" 

   arr7+=($f) 

  else 

   echo "Image bitstring output matches for $noex" 

  fi 

 else 

  echo "An error has occurred and the bitstring output file 

couldn't be found" 

  arr7+=($f) 

 fi 

 wait 

 rm $noex.txt 

 echo "" 

done 

drawfails=${#arr5[@]} #List of drawing files that failed to compile to Java 

let "drawfails += ${#arr6[@]}" #List of drawing files that failed to compile 

from Java to a class file 

let "drawfails += ${#arr7[@]}" #List of drawing files that ran and output 

different image output than expected 

if [ $drawfails != 0 ] 

then 

 echo "$drawfails test file(s) did not behave as expected in this 

stage:" 

 for var in "${arr5[@]}" 

  do 

  finalarr+=($var) 

  echo "${var}" 

  done 

 for var in "${arr6[@]}" 

  do 

  finalarr+=($var) 

  echo "${var}" 

  done 

 for var in "${arr7[@]}" 

  do 

  finalarr+=($var) 

  echo "${var}" 

  done 

else 

 echo "All draw test files compiled and ran as expected." 

fi 
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numfails=${#finalarr[@]} 

if [ $numfails == 0 ] 

then 

 echo "-------------" 

 echo "All test cases passed." 

else 

 echo "-------------" 

 echo "The following test cases did not perform as expected:" 

 echo "-------------" 

 for var in "${arr[@]}" 

 do 

  echo "$var failed to compile into a Java file." 

 done 

 for var in "${arr2[@]}" 

 do 

  echo "$var failed to compile from a Java file into a class file." 

 done 

 for var in "${arr3[@]}" 

 do 

  echo "$var did not execute as expected (either the output result 

was wrong or a runtime error occurred)." 

 done 

 for var in "${semanticarr[@]}" 

 do 

  echo "$var did not fail to compile, as expected." 

 done 

 for var in "${arr5[@]}" 

 do 

  echo "$var, a drawing test program, did not compile into a Java 

file." 

 done 

 for var in "${arr6[@]}" 

 do 

  echo "$var, a drawing test program, did not compile from a Java 

file into a class file." 

 done 

 for var in "${arr7[@]}" 

 do 

  echo "$var did not draw the expected output image, please 

recompile it without the -t flag and run to visually verify image integrity." 

 done 

fi 

 

###################################### 

#Clean generated java and class files# 

###################################### 

CLEAN="rm *.java" 

$CLEAN 

CLEAN="rm *.class" 

$CLEAN 

CLEAN="rm *.txt" 

$CLEAN 

wait 
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