
EHDL
Easy Hardware Description Language

COMS 4115: Programming Languages and
Translators, Fall 2011

Paolo Mantovani (pm2613)
Mashooq Muhaimen (mm3858)

Neil Deshpande (nad2135)
Kaushik Kaul (kk2746)

Overview & Motivation
• Why VHDL

– Language in itself very verbose and low level

– Becomes very complex as the complexity of digital system
increases

– Well understood problem domain

• Goals of EHDL

– Simple C like syntax, so flat learning curve

– Succinct and straightforward, will help in increasing
productivity of hardware engineers

– Easy to grasp imperative style of coding

Tutorial
• Start off – Nothing different from the ordinary

– Open your favorite editor

– Start off with the function main().

– Write EHDL code within this function. May also create your own
functions.

– Save the file with ‘.ehdl’ extension

– Call the Ehdl compiler on the target file

• Data types: int, array

• Operations
– Arithmetic Operations

– Logical Operations

– Binary Operations

– Unary Operations

Tutorial

Four_to_one_mux.ehdl

int(8) z main (int(8) a, int(8) b,
int(8) c, int(8) d, int(2) sel) {
switch (sel) {

 case 0: z = a;
 case 1: z = b;
 case 2: z = c;
 default:z = d;

 }
}

./ehdl -o adder.vhd adder.ehdl

adder.ehdl

int(32) c main (int(32) a, int(32) b) {
 c = a + b;
 }

./ehdl -o adder.vhd adder.ehdl

POS
 (int(1) sum, int(1) carry) fulladder(int(1) a, int(1) b, int(1)

carryin){

 sum = a ^ b ^ carryin;
 carry = (a && b) ^ (carryin && (a ^ b));

}

(int(4) s, int(1) overflow) main(int(4) a, int(4) b, int(1) carryin) {

 int(1) sum[4];
 int(1) carry[4];

 (sum[0], carry[0]) = fulladder(a(0),b(0),carryin);
 POS(1);
 (sum[1], carry[1]) = fulladder(a(1),b(1),carry[0]);
 POS(1);
 (sum[2], carry[2]) = fulladder(a(2),b(2),carry[1]);
 POS(1);
 (sum[3], carry[3]) = fulladder(a(3),b(3),carry[2]);
 POS(1);

 s(3) = sum[3];
 s(2) = sum[2];
 s(1) = sum[1];
 s(0) = sum[0];
 overflow = carry[3];
}

While Loop
/* gcd */

Int(8) c main(int(8) a, int(8) b){

 while (a != b) {
 if (a > b) {
 a = a - b;
 }
 else{
 b = b - a;
 }

 POS(1);
 }

POS(a==b);
c =a ;

}

/* primes */
(int(32) primes=2) main (int(32) m) {
 int(1) a[200];
 int(1) sig;
 int(32) n = 2;
 int(32) k = 2;

 while (n <= m) {
 if ((a[n] == 0) && (k <= m)) {
 if (k == n) {
 primes = n;
 } else {
 a[k] = 1;
 }
 k = k + n;
 }else {
 n = n + 1;
 k = n + 1;
 }
 }
}

Trafficlight.ehdl
 const int(2) HG = 0;

const int(2) HY = 1;
const int(2) FG = 2;
const int(2) FY = 3;
const int(8) YDuration = 2;
const int(8) FDuration = 3;

(int(1) hwGreen, int(1) hwYellow, int(1) farmGreen, int(1)
farmYellow)
main (int(1) car) {

 int(2) state;
 int(8) yCntr;
 int(8) fCntr;

 state = HG;
 while (1) {
 switch (state) {
 case HG:
 hwGreen = 1; hwYellow = 0;
 farmGreen = 0; farmYellow = 0;
 if (car == 1) {
 state = HY;
 yCntr = 1;

 }
 case HY:
 hwGreen = 0; hwYellow = 1;
 farmGreen = 0;farmYellow = 0;

 yCntr = yCntr + 1;
 if (yCntr == YDuration) {
 state = FG;
 fCntr = 1;
 }

case FG:
 hwGreen = 0;hwYellow = 0;
 farmGreen = 1;farmYellow = 0;

 fCntr = fCntr + 1;
 if ((car == 0) || (fCntr == FDuration)) {
 state = FY;
 yCntr = 1;
 }

case FY:
 hwGreen = 0; hwYellow = 0;
 farmGreen = 0; farmYellow = 1;

 yCntr = yCntr + 1;
 if (yCntr == YDuration) {
 state = HG;
 }

 }
 }

}

Compiler Architecture

Lessons Learned

• Team-oriented development : complementary
strengths

• Interface-oriented design: Some instances where other
teams members had to wait

• Version control systems: SVN was a good productivity
tool but we could have used more branches to cut the
wait times

• Test suite : Helped uncover a ton of bugs
• Writing tests : Helped improve understanding of

semantics
• Code coverage : Again, helped catch bugs by forcing us

to devise new test cases
• Eclipse: is cranky

More lessons learnt

• Same syntax – wildly different semantics

• List.fold_left()

• Ocaml has for loops !!!

