
PLT: 2011.09.28
David Hu (dh2458)
Jonathan Huggins (jhh2143)
Hans Hyttinen (heh2116)
Harley McGrew (hm2457)

YAPPL: Yet Another Probabilistic
Programming Language

Objectives and Motivations
Probabilistic programming languages have grown increasingly popular in recent years because
they allow for the concise definition of complex statistical models. They also provide tools for
sampling the (usually Bayesian) models. YAPPL is inspired by the probabilistic programming
language Church, an implementation of a pure subset of Scheme (a dialect of Lisp) for
generating models using probabilistic functions. Church relies on the standard Lisp syntax,
which is unintuitive and difficult to read. The syntax of YAPPL is inspired by OCaml and
contains special constructs for the probabilistic elements of the language, which makes it more
approachable and human-readable than Church.

HANSEI is a domain specific language library for ML that does implement some probabilistic
functionality. YAPPL differentiates itself from HANSEI by providing clean, native syntax for the
representation of stochastic functions, memoization, and conditional sampling.

Key Features
YAPPL is a strongly-typed functional probabilistic programming language. Below we outline its
core features and how they contribute to the language’s functionality.

Functional. Adopting the functional programming paradigm allows for the language to
philosophically stay true to mathematics and to have syntax that mimics mathematical
expressions. Functions are evaluated by prepending ~.

Strongly-typed. As we are staying as mathematically true as possible, weak typing is just
not possible because type coercion cannot be done on mathematical expressions, functions,
or variables. Strong typing also reduces ambiguities allows the programmer to have more
confidence in what he/she has written before compilation.

Pure. Well, as much as possible. Functions have no side effects because the language aims to
be as similar to actual mathematics as possible. The only side effects allowed are implications
of I/O and random number generation. All random number generation is eventually performed
via calls to the built-in function rand.

Probabilistic. The heart of the language involves operations and manipulations related to
probability. Thus, it has built-in support for sampling, memoization, and the conditional operator.

Sampling – When the programmer defines a function that returns a numerical value,
~ is a unary operation that can be applied to the function that denotes we are taking a
sample from the function.

Memoization – We can also memoize sampling; i.e., create a version of a function that
returns the same value for each call with the same arguments.

Conditionals – When evaluating a function, we can condition that the return value of
that function meet certain criteria. If it so happens that the criteria can never be met, we
place the fault with the programmer.

Random number generation – Random number generation is built into the language, as
it is such a core tenant of probability.

types (all are immutable)

fun, int, bool, float, string, fun[], int[], bool[], float[], string[]
assignment and function definition

=
memoized function definition

:=
condition (predicate) definition

= <expr> | <cond-expr>
memoized condition (predicate) definition

:= <expr> | <cond-expr>
return value keyword (used in <cond-expr>):

@
sample, evaluate a function

~
arithmetic operators

+ - * / = != < > <= >= %
boolean operators

or and not
list operators

:: @
string operators

^

Example Code
single line comment
multi
 line

comment
###

value definition
float:q = .9;
q is defined as 0.9 in the global scope

sample binding;
int:x = ~geom q | @ > 5;
x is bound to the return value of the function geom evaluated with
parameter q; the “| @ > 5” means that the return value of ~geom q is
conditions being greater than 5

function definition
fun int oneOrTwo float:q = geom q | @ = 1 or @ = 2;
a function that samples from geom q, conditional on the sample being 1 or 2

function equivalent to above
fun int oneOrTwo2 int:q =
 int:x = ~geom q in
 if x = 1 or x = 2 then

x
 else

~oneOrTwo2 q;

fun bool gtFive int:x = x > 5;

this is a memoized function
fun int f int:n := ~geom .9 | gtFive @;
~f 0;
-> 16
~f 1;
-> 6
later, ~f 0 still returns 16
~f 0;
-> 16

fun int[] apply (fun int int):f int[]:a =

match(a) with
case x :: rest -> ~f x :: ~apply f rest
case [] -> ();

apply has type fun int[] ((fun int int) int[])
f has type fun int (int)

