
PLT Project Proposal: The Tree Manipulating Language

Jiabin Hu (jh3240)

Akash Sharma (as4122)

Shuai Sun (ss4088)

Yan Zou (yz2437)
(Dated: September 28, 2011)

I. MOTIVATION

Tree is one of the most fundamental data structures not only in computer science, but also in real life. The
applications built on it range from data storing and searching to coding and routing algorithms. However,
in most modern programming languages, representing a tree requires pointers or references, which often
leads to bugs that are hard to catch. Furthermore, codes on tree manipulation are usually difficult to read,
since they hardly reflect the abstracted operation. Therefore, we plan to design a new language, the Tree
Manipulating Language (TML), specifically for manipulations on trees. The goal of the language is to provide
more efficient and user-friendly programming methods to implement operations on trees.

II. INTRODUCTION

In TML, we introduce a new type named type Tree . As our language is specifically designed for tree
programs, incurring a type Tree will make it easier to program. Basic operations to program on a tree are
provided in our language, such as tree construction, adding tree node, referring to father, referring to root
data, etc. Programmers could both use the provided operation or define new functions to manipulate trees.

The highlight of our language is that, everything except primitive types is regarded as a tree, just like
everything in Java is an object. Noted that every child of a tree is the root of its sub-tree. In TML, we regard
all nodes in a tree as sub trees which are of the same type as the original one. When applying operations
on a tree, we recursively apply the operations on sub trees and the root. The recursive feature of trees is
the reason for this language feature. For operations on a single node, reference to the node is available by
referring to its sub tree.

In TML, users can define new types of tree inherited from the basic type Tree . The degree and storage
field can also be user-defined. Users could use this feature to build their own trees and even queues, stacks,
lists, etc.

FIG. 1: TML Compiling Process

TML compiles the source codes and translate them into C++ or Java source code, which is then compiled
by gcc or java into executable files. The C++ or Java codes in the middle of this process can also be used
by programmers in other C++ or Java programs. Figure 1 shows the compiling process of TML.

III. SAMPLE CODE

FIG. 2: Tree constrution in sample code

1 // Type d e f i n i t i o n o f MyTree t
2 // with Degree 2 and Storage o f i n t .
3 Type MyTree t <2, int>;
4
5 // Def ine s i x t r e e s with i n i t i a l va lues f o r root nodes .
6 MyTree t a (0) , b (1) , c (2) , d (3) , e (4) , f (5) ;
7 // Build a t r e e with s i x sub t r e e s .
8 a −> (b −> (d , e −> (f ,)) , c) ;
9

10 // An example o f i no rde r t r a v e r s a l .
11 forEach ch i l d in a by ino rde r do
12 {
13 pr in t (ch i l d) ;
14 }

IV. SYNTAX DRAFT

A.Basic
Every statement should end with semicolon. Comments can be written as follows:

1 //This i s a s i ng l e−l i n e comment
2 /∗
3 This i s a multi−l i n e comment
4 ∗/

B.Types

1. int
Type of integers.

2. float
Type of floating numbers.

3. char
Type of single characters.

4. string
Type of character sequences.

5. Tree
A tree structure containing a node and connections to its subtrees. Before using this type, a type
definition should be in the following format to indicate the degrees, the name index of subtrees
and the type of value of each nodes:

1 Type MyTree\ t \ t e x t l e s s 2 [l e f t , r i g h t] , int\ t e x t g r e a t e r

This means MyTree t is a type of tree whose degree is at most 2 with the first subtree called left
and second subtree called right. Also, each node of this tree contains an integer.

[left, right] part is optional. By default, the first subtree could be simply referred by number 0,
and the second by number 1, and so on.

2

The keyword Tree can be used directly as a type, which means no restrictions on degree and type
of node values.

C.Expressions

• Basic Operators:

expr1 + expr2 Add two numbers, or concatenate two strings

expr1 - expr2 Subtraction

expr1 * expr2 Multiplication

expr1 / expr2
Division. If the value of expr1 and expr2 are both integers, the

result is the integral part of the result.

expr1 % expr2 The remainder part of the division

<, <=, ==, <>, >=, > Comparisons, returns 0 if false, 1 if true.

var = expr Assignments

• Boolean Operators:

expr1 and expr2 Logic and

expr1 or expr2 Logic or

not expr Logic not

• Tree Operators:

Tree[name]
Get the subtree by its name index. The name index of subtrees is

specified at tree type definition.

Tree[integer]
Get the subtree by its number, which is counted from the left. The

number of the first subtree is 0.

Tree ->() Assign all the subtrees. This assignment can be nested.

@Tree Get the value of the root node

ˆTree Get the parent of the subtree

D.Branches
There is only one kind of control statement-if:

1 i f expr then
2 {
3 // Statements when expr i s 1
4 }
5 else
6 {
7 // Statements when expr i s 0
8 }

E.Loops
There are three kinds of loops - for, while and forEach:

1 for var = start num to end num by step do
2 {
3 //Loop body
4 }

1 while expr do
2 {
3 //Loop when expr i s 1
4 }

3

1 forEach var in t r e e / s t r i n g by f u n c t i o n i t e r do
2 {
3 // each element in a t r e e or a s t r i n g produces an i t e r a t i o n .
4 //The elements w i l l be i t e r a t e d accord ing to what i s s p e c i f i e d in f u n c t i o n i t e r
5 }

F.Functions

1 re tu rn type funct ion name (argument l i s t s)
2 {
3 // Statements
4 }

Each item in argument lists contains the type of the argument and its name, separated by commas.

4

	Motivation
	Introduction
	Sample Code
	Syntax Draft

