
YAPPL: Yet Another Probabilistic Programming Language

David Hu
Jonathan Huggins

Hans Hyttinen
Harley McGrew

October 31, 2011

1

YAPPL: Yet Another Probabilistic Programming Language

Contents

1 Introduction 3

2 Language Reference Manual 4
2.1 Notation . 4
2.2 Lexical conventions . 4

2.2.1 Comments . 4
2.2.2 Identifiers . 4
2.2.3 Keywords . 4
2.2.4 Constants . 5
2.2.5 Integer Literals . 5
2.2.6 Floating-point Literals . 5

2.3 Types . 5
2.3.1 Non-function Type Declarations . 5
2.3.2 Function Type Declarations . 6

2.4 Operations . 6
2.4.1 Value binding . 6
2.4.2 Function binding . 6
2.4.3 Function evaluation . 6
2.4.4 List construction . 7
2.4.5 Patterns . 7

2.5 Expressions . 7
2.5.1 Primary expressions . 7
2.5.2 Multiplicative operators . 8
2.5.3 Additive operators . 8
2.5.4 Relational operators . 8
2.5.5 Equality operators . 8
2.5.6 Boolean operators . 8
2.5.7 Concatenation operator . 9
2.5.8 List building operator . 9
2.5.9 Conditional expression . 9
2.5.10 Pattern match expression . 9
2.5.11 Expression sequencing . 9

2.6 Built-in Functions . 9
2.6.1 rand . 10
2.6.2 print . 10

2.7 Grammar . 11

2

YAPPL: Yet Another Probabilistic Programming Language

1 Introduction

Probabilistic programming languages have grown increasingly popular in recent years because
they allow for the concise definition of complex statistical models. They also provide tools
for sampling the (usually Bayesian) models. YAPPL is inspired by the probabilistic program-
ming language Church, an implementation of a pure subset of Scheme (a dialect of Lisp) for
generating models using probabilistic functions. Church relies on the standard Lisp syntax,
which is unintuitive and difficult to read. The syntax of YAPPL is inspired by OCaml and
contains special constructs for the probabilistic elements of the language, which makes it more
approachable and human-readable than Church.

3

YAPPL: Yet Another Probabilistic Programming Language

2 Language Reference Manual

2.1 Notation

Through the document, nonterminals are in brown italics and terminals are in light blue
monospace. Regular expression-like constructs are used to simplify grammar presentation and
are in black. Brackets [] are used to indicate optional parts of productions, curly braces
{} indicate portions of productions that can appear zero or more times, and parentheses ()
indicate grouping, with a vertical bar | separating options.

2.2 Lexical conventions

As syntax of YAPPL is inspired by OCaml, many of the lexical conventions follow those of that
language. YAPPL has four kinds of tokens: identifiers, keywords, constants, and expression
operators. Whitespace such as blanks, tabs, and newlines are ignored and serve to separate
tokens. Comments are also ignored.

2.2.1 Comments

A single # indicates that all succeeding characters shall be considered part of a comment and
ignored until a newline is encountered.

Immediately following a newline, a series of three ### indicates that all succeeding characters
shall be considered part of a comment until another series of three ### is encountered. Note
that newlines are ignored following the ###, which essentially delimits multi-line comments.

2.2.2 Identifiers

An identifier is a series of alphabetical letters and digits; the first character must be alphabetic.

2.2.3 Keywords

The following identifiers are reserved as keywords/special function and may not be used oth-
erwise:

fun if match
int then with
bool else case
float in string
true false print
rand and or

The keyword string is not currently used, but is reserved for future use.

4

YAPPL: Yet Another Probabilistic Programming Language

2.2.4 Constants

The reserved boolean constants are true and false. The empty list constant is [] (for all
types).

2.2.5 Integer Literals

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign.

Examples of integer literals are 1337 and -42.

2.2.6 Floating-point Literals

Floating-point decimals consist in an integer part, a decimal part and an exponent part. The
integer part is a sequence of one or more digits, optionally preceded by a minus sign. The
decimal part is a decimal point followed by zero, one or more digits. The exponent part is
the character e or E followed by an optional + or - sign, followed by one or more digits. The
decimal part or the exponent part can be omitted, but not both to avoid ambiguity with
integer literals.

Examples of floating-point constants are 9000.1, 2e-5, and 1.4e9.

2.3 Types

The following are the basis data types in YAPPL:
int an integer.
float double-precision floating point.
bool a boolean value (either true or false).
fun a function.

In addition there are derived array types denoted

type []

2.3.1 Non-function Type Declarations

All bindings must either be declared within a function declaration or declared when bound.
A non-function declaration specifies a type and an identifier in the format type : identifier.
Spaces around the colon are optional. Examples of non-function type declarations:

int:temp
float[]:data
bool : flag

5

YAPPL: Yet Another Probabilistic Programming Language

2.3.2 Function Type Declarations

Function declarations consists of fun followed by a type declaration for the return type,
followed by zero or more type declarations for arguments of function. Optionally, parentheses
may surround the type declarations:

fun type-decls ... type-decls

where

fun-type-decls =
fun-type-decls type-decl
(fun-type-decls)

Examples of function type declarations:

fun int:add int:a int:b
fun bool:contains (float:a float[]:list)

2.4 Operations

2.4.1 Value binding

Values are bound to names through the construct

value-decl1 = expr1 and ... and value-decln = exprn in expr

which evaluates expr1 . . . exprn in an unspecified order and binds the values of those expressions
to the names specified in value-decl1 . . . value-decln.

2.4.2 Function binding

The syntax for function binding is identical to that for value binding, except value-decl is
replaced by function-decl and any number of = symbols may be replaced by := symbols. The
:= symbol defines a special memoization function. A memoized function is only evaluated
once for a set of input values. Once function is evaluated on those values, it will always return
the same value without being reevaluated.

2.4.3 Function evaluation

Functions are evaluated with the following construct:

~ identifier [expr1 ... exprn] [| expr]

where expr1 . . . exprn are optional arguments passed to the function and | expr specifies an
optional condition that the return value of the function must fulfill. The return value of the
function may be referenced within the condition by the special variable $.

6

YAPPL: Yet Another Probabilistic Programming Language

2.4.4 List construction

Lists can be constructed using the syntax

[expr1 , ... , exprn]

Each expression must have the same type.

2.4.5 Patterns

Patterns are templates that allow selecting values of a given shape and binding identifier
names to values. Patterns are used in pattern matching.

2.4.5.1 Variable Patterns A variable pattern consists of a value identifier. The pattern
will match any value, and the value will be bound to the identifier. The pattern _ will also
match any value, but will not result in a binding. A value identifier can only appear once in
a pattern.

2.4.5.2 Constant Patterns A pattern consisting of a constant matches the values equal
to that constant.

2.4.5.3 Variant Patterns The pattern pattern :: pattern matches non-empty lists whose
heads match the first pattern and whose tails match the second pattern. The :: operator is
right associative.

2.5 Expressions

The precedence of expression operators is the same order as they are presented below. Op-
erators in the same grouping (multiplicative, additive, relational etc.) are given the same
precedence. Expressions on either side of binary operations must have the same type.

2.5.1 Primary expressions

2.5.1.1 identifier An identifier is a primary expression, provided it has been suitably
bound. Its type is specified when bound.

2.5.1.2 constant A decimal or floating constant is a primary expression. Its type is int in
the first case, float in the last.

2.5.1.3 identifier[expr] An identifier followed by an expression in square brackets is a
primary expression that yields the value at the int index of a list.

7

YAPPL: Yet Another Probabilistic Programming Language

2.5.1.4 (expr) A parenthesized expression is a primary expression whose type and value
are identical to those of the unadorned expression.

2.5.2 Multiplicative operators

The multiplicative operators * (multiplication), / (division), and % (modulus) are binary and
group left-to-right. The binary % operator results in the remainder from the division of the
first expression by the second. Both operands must be type int and the result is int. The
remainder has the same sign as the dividend.

expr * expr
expr / expr
expr % expr

2.5.3 Additive operators

The additive operators + (sum) and - (difference) are binary and group left-to-right.

expr + expr
expr - expr

2.5.4 Relational operators

The relational operators < (less than), > (greater than), <= (less than or equal to) and >=
(greater than or equal to) all yield false if the specified relation is false, and true if it is true.

expr < expr
expr > expr
expr <= expr
expr >= expr

2.5.5 Equality operators

The = (equal to) and the != (not equal to) operators function as the relational operators
above, but have a lower precedence. Therefore, “a<b = c<d” is true when a<b and c<d have
the same truth value.

expr = expr
expr != expr

2.5.6 Boolean operators

The boolean operators and (conjunction) and or (disjunction) are binary and group left-to-
right. The boolean operator ! (negation) is unary and groups right-to-left. The second
operand or or may not be evaluated if the value of the first is false.

8

YAPPL: Yet Another Probabilistic Programming Language

expr and expr
expr or expr
! expr

2.5.7 Concatenation operator

The concatenation operator yields an list that is the concatenation of the left list at the head
of the right list. Both sides must be lists of matching type (e.g. int[] or bool[]).

expr @ expr

2.5.8 List building operator

The building operation

expr1 :: expr2

yields a list with expr1 as the head and expr2 as the tail. Thus, if expr1 is of type type, then
expr2 must have type type[].

2.5.9 Conditional expression

The conditional expression evaluates to the second expression if the first is true, otherwise it
evaluates to the third expression. The else binds to the closest if.

if expr then expr [else expr]

2.5.10 Pattern match expression

The case expression notation yields the expression paired with the first pattern matching the
expression to be matched.

match expr with pattern1 -> expr1 | ... | patternn -> exprn

2.5.11 Expression sequencing

A pair of expressions separated by a semicolon is evaluated left-to-right and the value of the
left expression is discarded. The type and value of the result are the type and value of the
right operand. This operator groups left to right.

expr ; expr

2.6 Built-in Functions

There are two built-in functions in YAPPL: rand and print. These are both reserved key-
words.

9

YAPPL: Yet Another Probabilistic Programming Language

2.6.1 rand

The function rand takes no arguments and returns a random or pseudo-random number be-
tween 0 and 1.

2.6.2 print

Since YAPPL does no currently support the string type or string literals, or allow for side-
effects, printing must be achieved explicitly within the language. The print function takes a
single expression of one of the three basic types as an argument and prints a string represen-
tation of that argument to standard output.

10

YAPPL: Yet Another Probabilistic Programming Language

2.7 Grammar

A summary of the grammar for YAPPL.

expr =
constant
identifier
(expr)
expr ; expr
expr :: expr
~ identifier { expr } [| expr]
prefix-op expr
expr infix-op expr
[expr { , expr }]
if expr then expr [else expression]
match expression with pattern-matching
value-binding { and value-binding } in expr
function-binding { and function-binding } in expr
rand
print expr

value-binding =
value-decl = expr

function-binding =
function-decl assignment-op expr

type-decl =
var-decl
function-decl

function-decl =
fun fun-type-decls { fun-type-decls }

fun-type-decls =
fun-type-decls type-decl
(fun-type-decls)

var-decl =
type : identifier

type =
type []
base-type
fun type { type }

11

YAPPL: Yet Another Probabilistic Programming Language

pattern-matching =
[|] pattern -> expression { | pattern -> expression }

pattern =
_
identifier
constant
(pattern)
pattern :: pattern

12

