
MR Language Reference Manual
Siyang Dai (sd2694)
Jinxiong Tan (jt2649)
Zhi Zhang (zz2219)
Zeyang Yu (zy2156)
Shuai Yuan (sy2420)

1

MR Language Reference Manual
1. Introduction

1.1 Concept of MapReduce
1.2 Data-flow of MapReduce
1.3 The MR Programming Language
1.4 Input and Output of MR Program

2. Lexical Elements
2.1 Tokens
2.2 Constants
2.3 Keywords
2.4 Identifiers
2.5 Operators
2.6 Separators
2.7 Comments
3. Data Types

3.1 Int
3.2 Double
3.3 Boolean
3.4 List
3.5 Conversions

4. Program Structure
4.1 Configuration
4.2 Mapper/Reducer Definition
4.3 Scope

5. Expression
5.1 Operators
5.2 Primary Expression
5.3 Unary Negative Operator
5.4 Binop Operation
5.5 Split Operation
5.6 Assignment Expression
5.7 Declaration Expression

6. Statements
6.1 Expression Statement
6.2 Block statement
6.3 Emit Statement
6.4 Conditional Statement
6.5 Iteration Statement

7. Reference

1. Introduction

2

#h.vwthqxwjadkc
#h.vwthqxwjadkc
#h.vwthqxwjadkc
#h.vwthqxwjadkc
#h.vwthqxwjadkc
#h.vwthqxwjadkc
#h.vwthqxwjadkc

MapReduce is a programming paradigm to support distributed computing on large data sets
on clusters of computer. The paradigm is inspired by the map and reduce functions universally
used in functional programming. The MR programming language is designed specifically for
MapReduce.

1.1 Concept of M1.1.1 List Processing
Essentially, a MapReduce program convert lists of input data elements into lists of output data
elements. The transformation is done by two phases: map and reduce.

1.1.2 Map
The first phase of a MapReduce program is called mapping. A list of data pairs are provided,
one at a time, to a function called the Mapper, which transforms each input element individually
to an output data element. Logically, a map function is defined as the following form:

Map(k1,v1) → list(k2,v2)

Figure 1 Map1

After that, all pairs with the same key from all lists generated by map function will be grouped
together, thus creating one group for each one of the different generated keys. The groups will
be the input of the next phase.

1.1.3 Reduce
Reducing allows you aggregate values together. A reduce function receives a list of values with
the same key. It then combines these values together. Logically, a reduce function is defined as
the following form:

Reduce(k2, list (v2)) → (k3,v3)

Figure 2 Reduce

1Figure 1,2,3 are from Hadoop Tutorial on Yahoo Developer Network

3

As a result, we get a pair of (k,v) for each distinct key generated by map function.

1.2 Data-flow of MapReduce
Combining map and reduce, we can have the following overview for the data-flow of a

MapReduce program on a cluster consisting of three nodes:

Figure 3 MapReduce

1.3 The MR Programming Language
MR is designed to support MapReduce paradigm. It hides the details of MapReduce framework
from the programmers. All the programmers need to do is to define a map function and a
reduce function. The program will be run according to the data-flow of MapReduce.

1.4 Input and Output of MR Program
An MR program takes two arguments from command line. The first one is the input directory.
And the second one is the output directory.

1.4.1 Input
All files under the input directory are used as input files. MR treats each line of each input file
as a separate record, and performs no parsing. It feeds the map function with the byte offset of
the line as key and the line content as value. Therefore, for map function, k1 is always an integer
and v1 is always one line of text.

1.4.2 Output
The output directory must not exist before the MR program runs. The MR program will create
one automatically. The output of reduce function will be written to files under the output directory

4

in form “key \t value” per line.

2. Lexical Elements

2.1 Tokens
There are five kinds of tokens in MR, i.e., literals, keywords, identifiers, operators and other
separators. Blanks, newlines and comments are ignored during lexical analysis except that they
separate tokens.

2.2 Constants

2.2.1 Text Constant
Text constant is a string containing a sequence of characters surrounded by a pair of double
quotes, i.e. “...”. For example, “hello world!” is a Text constant. Identical Text constants are the
same. All Text literal are immutable.

One thing to note is that, in MR, there is no character type. Even a single character is Text
constant type which can be regarded as an extended character set.

2.2.2 Int Constant
A Int constant refers to a integer consisting of a sequence of digits. It supports signed and
unsigned integers. Int constant cannot start with a 0 (digit zero). All integers are default to be
decimal (base 10). For example, -15 and 2012 are valid Int constant.

2.2.3 Double Constant
In MR, a double constant refers to a floating constant which consists a integer part, a decimal
point and a fraction part. In addition, it supports an ‘e’ followed by an optionally signed integer
exponent. The integer part and fraction part can be one digit or a sequence of digits. Either of
them can be missing, but not both. Also either the decimal point or the e and the exponent (not
both) may be missing. The following are valid Double constants: 1. or 0.5e15 or .3e+3 or .2 or
1e5

2.3 Keywords
The following words are reserved as the keywords which cannot be used otherwise.

Text Int Double Boolean List
def if else foreach emit
and or Mapper Reducer split
by true false

2.4 Identifiers
Identifiers are used for naming variables, parameters and functions. Identifier consists of a
sequence of letters, digits and the underscore _ , but it must start with a letter. Identifier should
not be the keywords listed above. It is case-sensitive.

2.5 Operators
An operator is a special token that performs an operation, such as addition or subtraction, on

5

either one or two operands. More details will be covered in later section.

2.6 Separators
A separator separates tokens. Other separators (Blanks, newlines and comments) are ignored
during lexical analysis except the following:
 () < > { } ;

2.7 Comments
// is used to indicate the rest of the line is comment (C++/Java style comment)

3. Data Types

3.1 Int
The 64-bit Int data type can hold integer values in the range of −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

3.2 Double
The Double type covers a range from 4.94065645841246544e-324d to
1.79769313486231570e+308d (positive or negative).

3.3 Boolean
A variable of Boolean may take on the values true and false only.

3.4 List
It is used as List<T>, i.e. List<Int> represents a list of Int values. It has unlimited size.

3.5 Conversions
When a value of Double type is converted to Int type, the fractional part is discarded. When a
value of integral type is converted to Double type, and the value is not exactly representable,
then the result may be either the next higher or next lower representable value.

No other conversion is allowed.

4. Program Structure
A MR program must exist entirely within a single source file (with a “.mr” extension). By
convention, a typical MR source file must include three parts: configuration, mapper and
reducer. That is,

program -> configuration-declaration mapper-definition reducer-definition

Here is an example program:
//wordcount.mr
#JobName = “WordCount”

//map function definition
def wordcount_map <(Int, Text) -> (Text , Int)> (offset, line): Mapper
{

List<Text> words;
words = split line by “ ”;

6

foreach Text word in words {
emit(word, 1);

}
}
//reduce function definition
def wordcount_reduce <(Text , Int) -> (Text, Int)> (word, counts): Reducer
{

Int total;
total = 0;
foreach Int count in counts {

total = total + count;
}
emit(word, total);

}

4.1 Configuration
configuration-declaration -> # configuration-attribute = Textconst;
configuration-attribute -> JobName

In this field, users can specify attribute JobName using a Text constant. (The support of
specifying the number of Mapper/Reducer process will be extended in the future.)

4.2 Mapper/Reducer Definition
mapper-definition -> def identifier mapping-relation parameters : function-type block
reducer-definition -> def identifier mapping-relation parameters: function-type block

The keyword def explicitly indicates the following code is a function definition. identifier field is
used to specify the name of function.

mapping-relation -> <(type-specifier1, type-specifier2) -> (type-specifier3, type-specifier4)>

mapping-relation defines the mapping relation of a pair of input and output for the function. The
format is given as < (type-specifier1, type-specifier2) -> (type-specifier3, type-specifier4) >. For
mapper, it specifies k1, v1 and k2, v2 as in Map(k1,v1) → list(k2,v2). For reducer, it specifies k2, v2
and k3, v3 as in Reduce(k2, list (v2)) → (k3,v3).

parameters -> (identifier1, identifier2)

Parameters refers to the identifiers that receive values passed to a function. identifier1 is of
type as type-specifier1 specifies. identifier2 is default to be a List of type as type-specifier2
specifies.

function-type -> Mapper

| Reducer

At the end of the function declaration, it is compulsory for users to explicitly specify the function

7

type. Exactly one mapper and one reducer is allowed and needed in one MR program.

4.3 Scope
A declared object can be visible only within a particular function. Also a declaration is not visible
to declarations that came before it. A variable name cannot be referred before declared.

5. Expression
An expression consists of at least one operand and zero or more operators. The operands may
be any value, including constants and variables.

5.1 Operators
The general view of the precedence and associative can be shown in the following table.
Operator Description Associativity
() Parentheses left-to-right
split by Split a Text value by delimiter

- Unary Negative Operator （%prec）

* / Multiplication/division left-to-right
+ - Addition/subtraction left-to-right
< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right
and Logical AND left-to-right
or Logical OR left-to-right
= Assignment
The operators on top on the table possess a higher precedence than those on the bottom of the
table. The detail of the expression will be included in the following subsections with the order of
precedence from high to low.

5.2 Primary Expression
expression:

literal
identifier
(expression)

An identifier is a primary expression, e.g., age. Its type should be specifically declared in the
program before it is evaluated in an expression. A literal is a primary constant, e.g., 1, 2, 1.1,
true. The type could be Boolean, Int, Double and Text. A parenthesized expression is a primary
expression, e.g., (x+y). This expression allows you to group expressions together to allocate
them a higher precedence.

5.3 Unary Negative Operator
expression:

- expression

8

The operand of this operation should have a type of Int or Double. This operation converts the
value of the expression from a positive number to a negative number or vise versa.

5.4 Binop Operation

5.4.1 Arithmetic operators
The arithmetic operators include *, /, +, -.
binop-expression:

 expression * expression
 expression / expression
 expression + expression
 expression - expression

The operands must be of type Int or Double.
The binop expression will return the arithmetic result of the operation. Operator * denotes
multiplication, / denotes division, + denotes addition, and – denotes subtraction. When applying
the division operation, the second operand could not be zero. Example: 11+22, 21.1*21.5

5.4.2 Relational operation
The relational operators group left-to-right.
relational-expression:

 expression < expression
 expression > expression
 expression <= expression
 expression >= expression

The result of operations < (less), > (greater), <= (less or euqal), >= (greater or equal), == (equal
to), and != (not equal to) is Boolean true/false according to the result of the boolean logic.
Examples: x<y, 11>=33

5.4.3 Logical Operation
logical-expression:

 expression and expression
 expression or expression

The and operator groups left-to-right. It returns true if both its operands are evaluated to be true.
Otherwise, it returns false. The or operator also groups from left-to-right. It returns true if either
of its operands is evaluated to be true. Otherwise it returns false. Both and and or follows short-
circuit evaluation, a.k.a. the second argument is only executed or evaluated if the first argument
does not suffice to determine the value of the expression. Examples: (1+1) and 0, (x>2) or (x <
1)

5.5 Split Operation
expression:

split identifier by Textconstant

This operation will separate a Text constant or variable according to the delimiters specified by
the Text constant. The Text constant represents a regular expression used as delimiter. For
example, split “a-b-c” by “-” gives a list of Text [“a”, “b”, “c”] using “-” as delimiter.

9

5.6 Assignment Expression
expression:

 identifier = expression
The value of the expression replaces that of the object referred to by identifier. The right
operand is converted to the type of the left by the assignment if applicable. Examples: x = 1

5.7 Declaration Expression
expression:

 declaration

declaration:
type-specifier identifier

Identifiers must be preceded by the type of the identifier.

6. Statements
statements -> statements statement | є

Statements are a list of statement. Statements are executed in sequence, which are executed
for their effect, and do not have values. Statements should not occur within the Literals. They
fall into one of the following production:

statement -> expression;
 | block
 | emit (expression, expression);
 | if (expression) block else block

| foreach declaration in expression block

6.1 Expression Statement
Most statements are expression statements, which have the following form:
statement:

expression;

Usually expression statements are expressions evaluated for their side effects, such as
assignments.

6.2 Block statement
statement:

{ statements }

Block statement is the compound statement surrounded by brackets. It groups a set of
statements into a syntactic unit, so that the several statements can be used where one is
expected.

10

6.3 Emit Statement
statement:

emit (expression, expression);
The emit statement is used for output in map function and reduce function: both a key and a
value must be emitted to the next list in the data flow.

6.4 Conditional Statement
statement:

if (expression) block else block
if (expression) block

Conditional statement chooses one of the two blocks to execute, based on the evaluation of
the expression. If the expression is evaluated as true, the first sub-statement is evaluated. If the
expression is false, the second sub-statement is executed.

6.5 Iteration Statement
statement:

foreach declaration in expression block

The foreach structure is used to traverse a list given by the expression. It iterates through each
object in the list and execute the block statement.

7. Grammar Summery
Notation Convention:

italic = non-terminal
bold = terminal

1. Types
type-specifier -> atom-type-specifier

| list-type-specifier
atom-type-specifier -> Text

| Int
| Double
| Boolean

list-type-specifier -> List<atom-type-specifier>

2. Program Structure
program -> configuration-declaration mapper-definition reducer-definition

configuration-declaration -> # configuration-attribute = Textconst;
configuration-attribute -> JobName

mapper-definition -> def identifier mapping-relation parameters : function-type block
reducer-definition -> def identifier mapping-relation parameters: function-type block

11

block -> { statements }

mapping-relation -> < (type-specifier, type-specifier) -> (type-specifier, type-specifier) >
parameters -> (identifier, identifier)
function-type -> Mapper

| Reducer

3. Expression
literal -> Textconstant | Intconstant | Doubleconst | Booleanconst

expression -> literal
| identifier
| (expression)
| -expression
| expression binop expression
| identifier = expression
| split identifier by Textconstant

| declaration

binop -> + - * / and or < > <= >= == !=
declaration -> type-specifier identifier

| type-specifier identifier = expression

4. Statement
statements -> statements statement | є
statement -> expression;

| block
| emit (expression, expression);
| if (expression) block
| if (expression) block else block
| foreach declaration in expression block

8. Reference
Hadoop Tutorial on Yahoo Developer Network, http://developer.yahoo.com/hadoop/tutorial/
Wikipedia, http://en.wikipedia.org/wiki/MapReduce

12

http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://developer.yahoo.com/hadoop/tutorial/
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce

