

COLOGO

A Graph Language

Reference Manual

Advisor: Stephen A. Edwards

Shen Wang (sw2613@columbia.edu)

Lixing Dong (ld2505@columbia.edu)

Siyuan Lu (sl3352@columbia.edu)

Chao Song (cs2994@columbia.edu)

Zhou Ma (zm2167@columbia.edu)

1. Introduction:

COLOGO language is an effective programming language for drawing 2D graphics. The

COLOGO language is designed in spirit of low threshold, which enables easy entry by

novices and yet meet the needs of high-powered users. We can use COLOGO for

education as it contains basic computer concepts appropriate for beginners. We can also

draw interesting pictures and design complicated logos with COLOGO so that the

language could be widely used for entertainment or commercial area.

2. Lexical Conventions:

The first step to compile our language is lexical analysis. In this step, the imported files

are added in, and the program is recognized as a sequence of tokens.

2.1 Character Set:
COLOGO supports ASCII character set.

2.2 Identifier:
An identifier is a sequence of letters and digits. There are several rules for our identifier.

For instance, the first character of the identifier must be a letter. The underscore_ is also

viewed as a letter. The upper and lower case letters are different in the identifier.

Identifiers may have different length, and at least the first 31 characters are significant for

the internal identifiers while for some implementations more characters are significant.

Internal identifiers include preprocessor marco names and all other names without

external linkage. Identifiers with external linkage are more restricted

2.3 Comments:
Comments are introduced by (: and ended by :).

If you see the character -_- in one line, everything behind -_- in this line are comments.

Comments are not allowed to be nested. When a comment starts with a (: , the comment

will be ended by the next occurrence of :). In the line with a -_-, if another -_- appears

behind the first -_-, it would be omitted.

2.4 Keyword:
Keywords identify statement constructs and specify basic types. Keywords cannot be

used as identifiers. The keywords are listed in Table 1.

Table 1: Keywords

FD RT LF RESET GLS

BK RAND PU PD PF

RGB AND OR NOT INT

REAL OBJ BOOL BRK CONDITION

FX GOON LOOP RETURN ELSE

ENDC ENDL STATIC EXTERN FUNC

TRUE FALSE

In general, keywords are separated into three categories:

1. Drawing functional

2. Logical operator

3. Variable type indication

4. Part of statement

2.5 Operators
COLOGO has 7 categories of operators. They are unary, cast, additive, multiplicative,

relational, logical and object reference operator, respectively

Unary

- !

Cast

(INT) (REAL)

Additive

+ -

Multiplicative

* / %

Relational

== != < <= > >=

Logical

AND OR NOT

2.6 Separators
COLOGO recognizes three types of separators of tokens. They are space, tab, new line.

The compile considers no difference among them.

2.7 Syntax group
{}: Braces are delimiter of compound statement, used in the cases of statements block

and constant array initialization

[]: Brackets are used for array index dereference

(): Parenthesis are for expression grouping and argument expression list

2.8 Sequential punctuator
, : used to separate arguments for function calls or array assignments.

; : used to separate statements.

3. Lvalue

Lvalue is an expression that refers to a region of storage. It is required by certain

operators. Refer to the operator part to see which operators expect an lvalue.

4. Expression and Operators

4.1 Primary Expressions

Primary expressions are the identifiers, constants or expressions in parentheses.

primary-expression:

->identifier

->constant

->(primary-expression)

If an identiifier has been suitably declared as the following parts shown below, it would

be viewed as a primary expression. The type of the identifier is specified by its

declaration. And if an identifier’s type is arithmetic or object this identifier would be an

lvalue.Lvalue is an expression that refers to a region of storage. It is required by certain

operators. Refer to the operator part to see which operators expect an lvalue.

A constant is a primary expression. Its type depends on its form as described before

A parenthesized expression is a primary expression whose type and value are identical to

those of the unadorned expression. The precedence of parentheses does not affect

whether the expression is an lvalue.

4.2 Postfix Expressions
The operations in postfix expressions group left to right.

postfix-expression:

 ->primary-expression

 ->postfix-expression.identifier

 ->postfix-expression(argument-expression-list)

 ->assignment-expression assignment-expression-list, assignment-expression

4.2.1 Array Reference
A postfix expression followed by an expression in square brackets is a postfix expression

denoting the index of the wanted element inside array, e.g. array[expression]

4.2.2 Function Calls
A function call is a kind of postfix expression, which we may name it the function

designator,. Usually the function call is followed by parentheses containing a possibly

empty, comma-separated list of assignment expressions which help to constitute the

arguments to the function.

We use the term argument for an expression passed by a function call and use the term

parameter for an input identifier received by function definition or described in a function

declaration. In preparing for the call to a function, a copy is made of each argument; all

argument-passing is strictly by value.

4.2.3 Object Reference
A postfix expression followed by a dot followed by an identifier is a postfix expression.

The first operand expression must be an object, and the identifier must name a member of

the object. The value is the named member of the object, and its type is the type of that

member. Detailed information is discussed in later chapters.

5. Declarations:
Declarations create variables with several attributes: variable name, type, scope, variable

value(optional).

5.1 Scope Specifier

There are three different scopes of variables.

Local: The variable can only be seen within the statement block.

Static: The variable can be seen within a file

External: The variable can be seen by other files.

5.2 Type Specifier

5.2.1 Primitive Types
There are three primitive types in COLOGO. They are declared as below:

INT id = value;

REAL id = value;

BOOL id = value;

Where id is the name of variable and value is an expression or a primitive value.

5.2.2 Array Type
For each primitive type, COLOGO has a corresponding array container. They are:

INT id[length];

REAL id[length];

BOOL id[length];

Where id is the name of variable and length is the number of elements contained in the

array. The above form will initialize the array as zero for INT and REAL, and false for

BOOL type. Other than this, the array can also be initialized with a constant array of the

same type. For example:

INT id[2] = {1,2};

REAL id[5] = {1.2, 3,5, 10.2, 5.6, 7.8};

BOOL id[3] = {TRUE, FALSE, TRUE};

5.2.3 Object Type
COLOGO allows the user to integrate multiple primitive type and form a complex object

type such that all the primitive type variables can be passed and referred to together. The

declaration are as follows:

OBJ id

{

primitive-declaration-list

}

Where id stands for the name of variable and the primitive-declaration-list stands for a

list of primitive declaration in the form of primitive- declaration-1; primitive-declaration-

2; etc.

6. Statements
In COLOGO, statements are executed in sequence. They fall into several groups.

Statement:

expression-statement

compound-statement

selection-statement

iteration-statement

jump-statement

6.1 Expression Statement
Most statements in COLOGO are expression statements, which have the form

expression-statement:

expression-opt;

Most expression statements are assignments or function calls. All side effects from the

expression are completed before the next statement is executed. If the expression is

missing, the construction is called a null statement; it is often used to supply an empty

body to an iteration statement to place a label.

6.2 Compound Statement
So that several statements can be used where one is expected, the compound statement

(also called “block”) is provided. The body of a function definition is a compound

statement.

compound-statement:

{ declaration-list-opt statement-list-opt }

declaration-list:

declaration

declaration-list

declaration

statement-list:

statement

statement-list

statement

If an identifier in the declaration-list was in scope outside the block, the outer declaration

is suspended within the block, after which it resumes its force. An identifier may be

declared only once in the same block. These rules apply to identifiers in the same name

space; identifiers in different name spaces are treated as distinct.

Initialization of automatic objects is performed each time the block is entered at the top

and proceeds in the order of the declarators. If a jump into the block is executed, these

initializations are not performed. Initialization of static objects is performed only once,

before the program begins execution.

6.3 Selection Statements
Selection statements choose one of several flows of control.

selection-statement:

CONDITION (expression) statement ENDC

CONDITION (expression) statement ELSE statement ENDC

In both forms of the CONDITION statement, the expression, which must have arithmetic

or pointer type, is evaluated, including all side effects, and if it compares unequal to 0,

the first substatement is executed. In the second form, the second substatement is

executed if the expression is 0. The else ambiguity is resolved by introducing keyword

ENDC.

6.4 Iteration Statements
Iteration statements specify looping.

iteration-statement:

LOOP (expression(opt)) statement

In the LOOP statement, the parameter expression must have BOOL type; it is evaluated

before each iteration, and if it becomes equal to FALSE, the LOOP is terminated. Side-

effects from each expression are completed immediately after its evaluation.

6.5 Jump Statements
A GOON statement may appear only within an iteration statement. It causes control to

pass to the loop-continuation portion of the smallest enclosing such statement. More

precisely, within each of the statements

LOOP (...) { …; GOON; }

A BRK statement may appear only in an iteration statement or, and terminates execution

of the smallest enclosing such statement; control passes to the statement following the

terminated statement.

A function returns to its caller by the RETURN statement. When RETURN is followed

by an expression, the value is returned to the caller of the function. The expression is

converted, as by assignment, to the type returned by the function in which it appears.

Running to the end of a function is equivalent to a return with no expression. In either

case, the returned value is undefined.

6.6 Draw Statements
Draw statements include operations for the turtle, which provide the drawing

functionality. We have 9 kinds of drawing statements.

FD expression; : Turtle move forward expression distance.

BK expression; : Turtle move backward expression distance.

LF expression; : Turtle turn left expression radian.

RT expression; : Turtle turn right expression radian.

RESET; :Reset the turtle to original position.

CLS; : Clear the screen.

PF; : Pen flip.

PD; : Pen down.

PU; : Pen up

7. Scope
A program need not all be compiled at one time: the source text may be kept in several

files containing translation units. Communication among the functions of a program may

be carried out both through calls and through manipulation of external data.

In our language the only one scope to consider is the lexical scope of an identifier which

is the region of the program text within which the identifier's characteristics are

understood;

Identifiers fall into several name spaces that do not interfere with one another; the same

identifier may be used for different purposes, even in the same scope, if the uses are in

different name spaces.

The scope of a parameter of a function definition begins at the start of the block defining

the function and persists through the function; the scope of a parameter in a function

declaration ends at the end of the declarator. The scope of an identifier declared at the

head of a block begins at the end of its declarator, and persists to the end of the block.

The scope of a structure, union, or enumeration tag, or an enumeration constant, begins at

its appearance in a type specifier, and persists to the end of a translation unit (for

declarations at the external level) or to the end of the block (for declarations within a

function).

If an identifier is explicitly declared at the head of a block, including the block

constituting a function, any declaration of the identifier outside the block is suspended

until the end of the block.

8. Grammer
declaration:

declaration-specifiers init-declarator-list(opt);

declaration-list:

declaration

declaration-list declaration

declaration-specifiers:

storage-class-specifier declaration-specifiers(opt)

type-specifier declaration-specifiers(opt)

type-qualifier declaration-specifiers(opt)

storage-class specifier: one of

STATIC EXTERN

type specifier: one of

INT REAL

object-specifier

type-qualifier:

CONST

object-specifier:

object identifier { object-declaration-list }

object identifier

object:

OBJ

object-declaration-list:

object declaration

object-declaration-list object declaration

init-declarator-list:

init-declarator

init-declarator-list, init-declarator

init-declarator:

declarator

declarator = initializer

object-declaration:

specifier-qualifier-list object-declarator-list;

specifier-qualifier-list:

type-specifier specifier-qualifier-list(opt)

type-qualifier specifier-qualifier-list(opt)

object-declarator-list:

object-declarator

object-declarator-list , objectdeclarator

object-declarator:

declarator

declarator(opt) : constant-expression

declarator:

direct-declarator

direct-declarator:

identifier

(declarator)

direct-declarator [constant-expression(opt)]

direct-declarator (parameter-type-list)

type-qualifier-list:

type-qualifier

parameter-type-list:

parameter-list

parameter-list:

parameter-declaration

parameter-list , parameter-declaration

parameter-declaration:

declaration-specifiers declarator \

identifier-list:

identifier

identifier-list , identifier

initializer:

assignment-expression

{ initializer-list }

initializer-list:

initializer

initializer-list , initializer

type-name:

specifier-qualifier-list

statement:

expression-statement

compound-statement

selection-statement

iteration-statement

jump-statement

draw-statement

draw-statement:

FD expression;

BK expression;

LF expression;

RT expression;

RESET;

CLS;

PF;

PD;

PU;

expression-statement:

expression(opt);

compound-statement:

{ declaration-list(opt) statement-list(opt) }

statement-list:

statement

statement-list statement

selection-statement:

CONDITION (expression) statement ENDC

CONDITION (expression) statement ELSE statement ENDC

iteration-statement:

LOOP(expression(opt)) statement

jump-statement:

GOON;

BRK;

RETURN expression(opt);

expression:

assignment-expression

expression , assignment-expression

assignment-expression:

conditional-expression

unary-expression assignment-operator assignment-expression

assignment-operator:

=

conditional-expression:

logical-OR-expression

constant-expression:

conditional-expression

logical-OR-expression:

logical-AND-expression

logical-OR-expression OR logical-AND-expression

logical-AND-expression:

inclusive-OR-expression

logical-AND-expression AND inclusive-OR-expression

equality-expression:

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression

relational-expression:

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression

shift-expression:

additive-expression

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

multiplicative-expression:

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

cast-expression:

unary expression

(type-name) cast-expression

unary-expression:

postfix expression

unary-operator cast-expression

unary operator:

- !

postfix-expression:

primary-expression

postfix-expression[expression] postfix-expression(argument-expression-list(opt))

postfix-expression.identifier

primary-expression:

identifier

constant

(expression)

argument-expression-list:

assignment-expression

assignment-expression-list , assignment-expression

constant:

integer-constant

real-constant

