
ASTs, Objective CAML, and Ocamlyacc

Stephen A. Edwards

Columbia University

Fall 2011

Parsing and Syntax Trees

Parsing decides if the program is part of the language.

Not that useful: we want more than a yes/no answer.

Like most, parsers generated by ocamlyacc can include actions:
pieces of code that run when a rule is matched.

Top-down parsers: actions executed during parsing rules.

Bottom-up parsers: actions executed when rule is “reduced.”
(ocamlyacc)

Actions

Simple languages can be interpreted just with parser actions.
%token PLUS MINUS TIMES DIVIDE
%token EOF
%token <int> LIT

%left PLUS MINUS
%left TIMES DIVIDE

%start top
%type <int> top

%%

top : expr EOF { $1 }

expr
: expr PLUS expr { $1 + $3 }
| expr MINUS expr { $1 - $3 }
| expr TIMES expr { $1 * $3 }
| expr DIVIDE expr { $1 / $3 }
| LIT { $1 }

{ open Calc_parse }

rule token = parse
[’ ’ ’\n’] { token lexbuf }

| ’+’ { PLUS }
| ’-’ { MINUS }
| ’*’ { TIMES }
| ’/’ { DIVIDE }
| [’0’-’9’]+ as s

{ LIT(int_of_string s) }
| eof { EOF }

let _ =<
let lexbuf =
Lexing.from_channel stdin in

print_int (Calc_parse.top
Calc_scan.token
lexbuf);

print_newline ()

Actions

Even in a parser for an interpreter, actions usually build a data
structure that represents the program.

Separates parsing from translation.

Makes modification easier by minimizing interactions.

Allows parts of the program to be analyzed in different orders.

Bottom-up parsers can only build bottom-up data structures.

Children known first, parents later.

Context of an object only established later.

What To Build?

Typically, an Abstract Syntax Tree that represents the program.

Represents the syntax of the program almost exactly, but easier for
later passes to deal with.

Punctuation, whitespace, other irrelevant details omitted.

Abstract vs. Concrete Trees

Like scanning and parsing, objective is to discard irrelevant details.

E.g., comma-separated lists are nice syntactically, but later stages
probably just want lists.

AST structure almost a direct translation of the grammar.

Abstract vs. Concrete Trees

expr : mexpr PLUS mexpr { ... };
mexpr : atom TIMES atom { ... };
atom : INT { ... };

3 + 5 * 4

expr

mexpr

atom

INT(3)

PLUS mexpr

atom

INT(5)

TIMES atom

INT(4)

PLUS

INT(3) TIMES

INT(5) INT(4)

Concrete Parse Tree Abstract Syntax Tree

Part I

Designing ASTs

Designing an AST Structure

Sequences of things

Removing unnecessary punctuation

Additional grouping

How to factor

One Way to Handle Comma-Separated Lists

{
type args = Arg of arg | Args of args * arg
type arg = ...

}

args : LPAREN arglist RPAREN { $2 }
arglist : arglist COMMA arg { Args($1, $3) }

| arg { Arg($1) }

int gcd(int a, int b, int c)

Args

Args

Arg

int a

int b

int c

Drawbacks:

Many unnecessary nodes

Branching suggests recursion

Harder for later routines to get the
data they want

A Better Way to Handle Comma-Separated Lists

Better to choose a simpler structure for the tree: use lists

type args = Args of arg list
type arg = ...

args : LPAREN arglist RPAREN { Args(List.rev $2) };
arglist : arglist COMMA arg { $3::$1 }

| arg { [$1] }

int gcd(int a, int b, int c)

Args

int a int b int b

Removing Unnecessary Punctuation

Punctuation makes the syntax readable, unambiguous.

Information represented by structure of the AST

Things typically omitted from an AST

Ï Parentheses
Grouping and precedence/associativity overrides

Ï Separators (commas, semicolons)
Mark divisions between phrases. Probably want a list of items
in the AST.

Ï Extra keywords
while-do, if-then-else. Just want a “While” constructor with
two children.

How to factor

Two possible ways to represent binary operators:

type expr =
Plus of expr * expr

| Minus of expr * expr
| Times of expr * expr
| ...

type binop = Plus | Minus | Times | ...

type expr =
Binop of expr * binop * expr

| ...

Each has advantages and disadvantages

Main question is how nice the later code looks. Is each operator a
special case, or can you handle them all at once?

Part II

Walking ASTs

M. C. Escher, Ascending and Descending, 1960

It’s easy in O’Caml

type operator = Add | Sub | Mul | Div

type expr =
Binop of expr * operator * expr

| Lit of int

let rec eval = function
Lit(x) -> x

| Binop(e1, op, e2) ->
let v1 = eval e1 and v2 = eval e2 in
match op with

Add -> v1 + v2
| Sub -> v1 - v2
| Mul -> v1 * v2
| Div -> v1 / v2

Comments on ASTs

Two ways to handle optional clauses:

type stmt =
If of expr * stmt * stmt option

| ...

let rec eval = function
If(e, s1, None) -> ...

| If(e, s1, Some(s2)) -> ...

(* or *)

let rec eval = function
If(e, s1, s2) -> ...

match s2 with
None -> ...

| Some(s) -> ...
| ...

type stmt =
If of expr * stmt

| IfElse of expr * stmt * stmt
| ...

let rec eval = function
If(e, s) -> ...

| IfElse(e, s1, s2) -> ...

