
ENGI E1112 Departmental Project Report:
Computer Science/Computer Engineering

Andrew Pope, Will Van Arsdall, Abhinav Mishra

December, 2011

Abstract

The goal of this project was to manipulate the functionalities of a HP 20b
Business Calculator. The main reason in doing this project was to see how
an embedded system, such as this calculator, can be adapted to meet certain
needs that it was not specifically designed for. This calculator was changed
from a normal business calculator to a RPN (Reverse Polish Notation) cal-
culator. The calculator was coded in the C programming language. The
source code was given for certain functionalities on the calculator, such as
printing on the LCD screen, which were implemented in the rest of the code.
Schematics of the calculator keyboard were also used for the design of the
projects. Using basic C knowledge, such as loops, pointers, and stacks, the
code for projects that led to the building of an RPN calculator was written
without the utilization of any C standard libraries. First, code was written
so that a word could scroll across the screen. The next projects involved
the reading of the keyboard and the entering and displaying of numbers and
operands. Finally, the RPN calculator code was written by building upon
the code from previous projects. The RPN calculator performs simple arith-
metic functions such as addition and multiplication with both negative and
positive integers.

1 Introduction
The HP 20b Business Calculator (Figure 1) is a standard business calculator mean-
ing it contains specal functions for financial applications and for regular arith-
metic operations. Some of the functions include an input/memory key for using
the RPN capabilities of the calculator, Other functions include interest conver-
sions and bonds that are especially applicable in finance and business. In these

1

projects, the main goal was manipulating the code and making it more complex
while building on previous code to make a RPN calculator.

Building certain functions on the calculator required knowledge on the soft-
ware and hardware of the calculator. The calculator code was built and manip-
ulated in the C programming language, which is one of the more low-level pro-
gramming languages. C was used because the calculator barely has any memory
(128 kilobytes of flash memory). Typically, in embedded systems, it is better to
use languages that do not have a large memory footprint.

Once a knowledge of the fundamentals of C was attained and the first project
was finished, there was a new attempt to gain a better understanding of the hard-
ware of the calculator, especially that of the keyboard so that it could actually
be used on the calculator. Other important hardware concepts are that in order
to connect to the computer, the calculator uses a USB-JTAG conversion interface
(basically USB to Serial Port) and for power, rather than batteries, the calculator
uses a power connecter to draw power from a wall outlet (the interface was cre-
ated by Professor Stephen Edwards of Columbia University-Computer Science
Department).

2 User Guide
The calculator has a twelve-digit display, of which ten are active. The keyboard
also has restricted use, and only the number and primary operation (+, -, /, *, =,
INPUT) keys are active. A RPN calculator operates in a manner that is very dif-
ferent than a normal calculator, as it uses postfix notation instead of infix notation.
Infix notation is essentially when the operators are placed between the numbers
that they are performing the operation on. On the other hand, in postfix notation,
the operator comes after the numbers. This means that a simple calculation, such
as 2 + 3, is actually represented as 2 3 +. This system is actually quite a bit more
useful than algebraic notation, as the intermediate results can be checked as one
works. Math teachers will even use this form of notation to help to show their
pupils how to do calculations [3].

The most important thing to know about RPN is that it uses a LIFO (Last-in-
first-out) stack, meaning that each applied operation will only affect the last two
numbers entered. For example, if one was to enter [2] [3] [4] [+], the two items
remaining would be 2 and 7. If one was to enter a + again, the only remaining
number would be 9. The use of this system eliminates the need to use PEMDAS,
or be concerned about order of operations, as an operation will always affect the
last two items available. This means that calculations such as (3+5)/(4-2) would
require fewer keystrokes to enter, as one wouldn’t have to type parentheses. This

2

Figure 1: The HP 20b (Image courtesy of Professor Edwards)

calculation, for example, would simply be [3] [5] [+] [4] [2] [-] [/]. The keystroke
saving effect is proportional to the complexity of the calculation, as it is dependent
on the number of parentheses that won’t need to be typed. This calculator allows
for the simultaneous storing of up to seven numbers, which is enough to complete
nearly any calculation with an economical use of keystrokes.

3 Social Implications
The demonstration of the manipulation of the calculator functionality can have
some major social implications. The project has proved that with the necessary
materials and a relatively simple knowledge of programming, a small device’s
functions can be changed to something completely different with a very basic
knowledge of programming. Moreover, it proves the power of computer science,
as, even for such a small device, which has barely any memory and an extremely
weak processor, and without the implementation of any C standard libraries, an
RPN calculator was still possible to build using basic C programming tools. In
a social context, people, with a little computer science and programming knowl-
edge, can modify simple devices and machines to perform new revolutionary func-
tions and make important tools. Essentially, the development of this project has
one major social implication in that it showed us that little devices can be changed
to perform new things because of the power of computer science.

3

Figure 2: JTAG and power supply on the HP 20b (Pictures courtesy of Professor
Edwards)

4 The Platform
Central to the project is the HP 20b calculator âĂŞ the platform for our custom
firmware. The key features of the HP 20b that make it ideal for this project are its
freely available software development kit and schematics. At its core, the HP 20b
is simply an LCD display and keyboard connected to an Atmel AT91SAM7L128
processor, each to be described in further detail below. In order to communicate
with the HP 20b, and to allow custom firmware to be implemented and tested,
Professor Edwards installed a JTAG header and a power connector to the back of
each calculator (Figure 2).

4.1 The Processor

The Atmel AT91SAM7L128 processor is a member of the 7L series of microcon-
trollers, designed for low power and including 128 kilobytes of flash memory,
a small amount for running typical programs. This makes the C programming
language ideal for this platform (see sections 5 and 6). Central to our project’s
goals is the processor’s system controller, which was modified (through software)
to leave certain peripheral components of the processor unpowered, saving en-
ergy. A block diagram of the processor can be found in Figure 3. The majority
of the peripherals shown were unused and left unpowered. A detailed technical
description of the AT91SAM7L128 can be found on Atmel’s website. [1]

4

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 3: The AT91SAM7L128 microcontroller [2]

5

Figure 4: Layout of the HP 20b LCD display [2]

4.2 The LCD Display

Critical to our purposes was an understanding of the calculator’s LCD display.
Figure 4 shows the layout of the HP 20b’s LCD. The LCD consists of 15 seven-
segment displays, 12 large and 3 small, with periods and commas between each,
as well as two one-segment negative signs. In the upper right of the LCD there
are displays reserved for specific calculator functions; these were left unused.
Professor Edwards provided us with a library of functions to easily manipulate
the calculator’s LCD. These initially included the following: lcd_init(), a func-
tion that prepares the LCD to be written to; lcd_put_char7(), a function that
places a character A-Z, 0-9 in one of the 15 specified displays; and lcd_print7(),
a basic string printing function. Eventually two more functions were added:
lcd_print_int(), which prints an integer instead of having to convert it to a charac-
ter and lcd_print_int_neg(), which performs the same function except for negative
integers.

4.3 The Keyboard

As a part of the project we examined the components of various types of key-
boards, attempting to understand their underlying mechanisms. Doing this re-
vealed a shared basic design between most keyboards, the HP 20b’s is no excep-
tion. Keyboards in general work by assigning each key to a point of intersection
in a matrix of wires. When a key is pressed, the two wires that overlap at that
point are shorted together, causing low voltage if the line is set to high. In order
to test for a pressed key, a column (or row) is set high, and then each row (or

6

Figure 5: Layout of the HP 20b keyboard [2]

column) is tested. A low row (or column) the represents a pressed key, whose row
and column is known. The HP 20b applies this same principle when testing for a
pressed key. The keyboard layout is shown in Figure 5, although what is typically
labeled a row is labeled a column in the schematic, and vice versa. Code for our
implementation of a key-press testing algorithm can be found in Section 6.2.

5 Software Architecture
The final RPN calculator has a variety of interacting pieces of software, each with
its own specific purpose and function. The most important of these include the
LCD library, the Keyboard library, the Assembly library, and the software to be
executed (RPN functionality, in our case). Each of them will be described below.

5.1 Assembly Library

The Assembly library is our lowest-level software interface with the HP 20b’s pro-
cessor. Functions and resource allocation calls are written in assembly and stored
in the HP 20b’s internal memory. Code written in C by developers is compiled
into assembly language and interpreted here, sending low-level instructions to the
processor and memory. All C libraries and functions are extensions of the func-
tionality of the Assembly library.

5.2 LCD Library

The LCD library is a compilation of C functions that can manipulate what is dis-
played on the HP 20b’s LCD screen. It serves as a window into the Assembly
Library code written in C can use the functions here to easily display characters,

7

integers, and strings on the LCD. Also defined in the LCD Library is the specific
character set used; which LCD segments light up for the letter A, for example.
5.3 The Keyboard Library

The Keyboard Library is at the core of our software architecture, transfering and
interpreting information when a keyboard key is pressed. Functions in the key-
board library give software written in C the ability to collect information about the
state of the keyboard, as well as providing explicit instructions to the processor
on how to determine if a key is pressed and which specific key it is. Functions
defined in this library are called in the highest software layer, and compiled in
the Assembly Library which translates them into keyboard voltages; a detailed
description of this process and the algorithm used can be found in Section 6.2.
5.4 Program Layer

The highest-level software to be run occurs in this layer, which consists of a pro-
gram written in C that calls functions from the Keyboard and LCD Libraries. The
majority of user functionality occurs in this layer; in our final example, this con-
sisted of RPN functionality. Detailed descriptions of our program’s functionality
can be found in Section 6.
6 Software Details
In this section, include cleaned-up listings of every bit of code you wrote for this
lab (only include the declarations for the library code I wrote) and explain how
they work, your motivations for them, whether you would do anything differently,
etc.
6.1 Lab 1: A Scrolling Display (Figure 6)

The first assignment required the design of a system to scroll a message across
the calculator LCD screen. Our code consists of primarily of only the main func-
tion and a helper function called strlen. Strlen is designed to find the length of a
string by iterating through its characters until it reaches a string terminating char-
acter. Our main method is composed of two loops, contained within an external
infinite loop. The first loop iterates through each character of the string, printing
it to the screen, and wrapping back to the beginning when it has exceeded the
screen’s width. This allows messages exceeding the screen’s width to be printed,
but may cause the message, when read at a given point in time to be unable to
be read properly. A second loop, referred to as a do-nothing loop creates a lag in
the processing that provides a delay, allowing the screen to refresh at a rate that
will allow for the message to be read. An external counter continually shifts the
column to which it starts printing, causing the message to move across the screen.

8

#include "AT91SAM7L128.h"
#include "lcd.h"

#define DELAY 50000
#define COLUMNS 12

int strlen(const char *s) {
int n;
for(n=0; *s!=’\0’;s++) n++;
return n;

}
int main() {
lcd_init();

char test[] = "test";
int len = 0;
len = strlen(test);
int x=0;

for(;;) {
int i, j;

for(i = x ; i < len + x; i++) {
lcd_put_char7(test[i - x],i%COLUMNS); }

while(j<DELAY) { j+=1; }
lcd_print7(" ");
j=0;
x++;

}

return 0;
}

Figure 6: Code for Lab 1 Solution

9

#include "AT91SAM7L128.h"
#include "lcd.h"
#include "keyboard.h"

int main()
{
lcd_init();

*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

keyboard_init();

for (;;)
{
if(keyboard_key()!=0)
lcd_print7(keyboard_key());

else
lcd_print7(" ");

}
return 0;

}

Figure 7: Code for Lab 2 main.c

6.2 Lab 2: Scanning the Keyboard (Figure 7)

To scan the keyboard, one must begin by setting all of the rows and columns to
the same value. This means that all columns will return the same value when read
and any columns that are different will return a slightly different value. In the case
of the calculator, the values were either high (1) or low (0), and when checking
rows, a low value was required for a positive result. To find a match, one must set
the column to low, and then set the row to low, and look for intersections, in which
the low setting of the row isn’t cancelled out by the high setting of the column.
In practice, this is process is carried out through two nested loops, an external
one that iterates through the columns, and an internal one that iterates through
the rows. At the start of the external loop, the column the loop is on is set high,
and then each row is checked to determine if it is low. If a low value is found,
the column is set back to high, and the key code of the key pressed is returned.

10

const char keyboard_keys[NUM_COLUMNS][NUM_ROWS] = {
{’N’, ’I’, ’P’, ’M’, ’F’, ’A’},
{’C’, ’R’, ’V’, ’B’, ’%’, ’L’},
{’\r’, ’(’, ’)’, ’~’, ’\b’, 0},
{’\v’, ’7’, ’8’, ’9’, ’/’, 0},
{’\n’, ’4’, ’5’, ’6’, ’*’, 0},
{’S’, ’1’, ’2’, ’3’, ’-’, 0},
{ 0, ’0’, ’.’, ’=’, ’+’, 0}};

int keyboard_key()
{
int i, j;
for(i = 0; i < COLUMNS; i++)
{
keyboard_column_low(i);

for(j = 0; j < ROWS; j++)
{
if(!keyboard_row_read(j))
{
keyboard_column_high(i); //Resets the current column
return keys[i][j];

}
}

keyboard_column_high(i);
}

return 0;
}

Figure 8: Code for Lab 2 keyboard.c

11

The key code is obtained by using the number of iterations to match the key to a
value in an array of possible keys. To test that our function worked, we created
an infinite loop in main, and continually called it, printing the result if a key was
pressed, and clearing the screen if no key was pressed.

6.3 Lab 3: Entering and Displaying Numbers (Figure 9, Figure 10, Figure 11,
Figure 12)

In order to store and display entered numbers, one must create a listener function
that polls for keyboard activity, and then send the results back to a function for
processing. We implemented this by having a function continually scanning the
keyboard, and then when a key was pressed, adding the character represented by
the key code to a string containing the numbers entered so far. At the end of each
scanning cycle, the current state of the string was printed, allowing the user to see
what they had entered. Once the user had finished entering digits, and pressed an
operation, the string was converted into a number and was stored along with the
operation in a struct. A second method called intToStr converted the integer to a
string, allowing the final number, and the operation that caused its return, to be
printed to the screen.

In this section, there were several edge cases that needed to be handled, as it
was dealing with user input, which can be relatively unpredictable. One of the first
cases that was encountered was a user pressing an operation without any number
having been entered. This case was handled by returning the maximum possible
integer value, which served as an error message, and as an indicator that no key
had been pressed. There was also the case of a user entering more digits than could
be displayed on the screen. This case was handled by discarding any user input
after the screen had been filled, which seemed to be the best manner of following
the Principle of Least Surprise.

6.4 Lab 4: An RPN Calculator (Figure 13, Figure 14, Figure 15, Figure 16)

The fourth lab combined the code used in the second and third lab to create a
fully functional RPN calculator. The design that was used was built on top of the
existing code, and added a new library called âĂIJoperationsâĂİ. In the operations
library, a LIFO stack was implemented to handle the storage of the entries. It
consisted of an array and a pointer, with a maximum limit of seven entries, and
was essentially an aggregate data structure. The three primary accessor methods
of a stack, push, pop, and peek were implemented as functions in the operations
library, and operations were performed through the utilization of these each of
these functions. Push places an item at the top of a stack, pop retrieves an item,

12

#include "AT91SAM7L128.h"
#include "lcd.h"
#include "keyboard.h"

char *intToStr(int number)
{
//Stores string after function return
static char str[COLUMNS + 1];
int column = LCD_7_COLUMNS - 4;
do {
str[column--] = number % NUM_BASE + ’0’;
number /= NUM_BASE;

} while (number);
while (column >= 0) str[column--] = ’ ’;

return str;
}

int main()
{
// Disable the watchdog timer

*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

lcd_init();
keyboard_init();

struct entry key;
keyboard_key_entry(&key);

char* str = intToStr(key.number);
str[COLUMNS - 1] = key.operation;
lcd_print7(str);

return 0;
}

Figure 9: Code for Lab 3 main.c

13

// Maximum value an integer can hold
define INT_MAX 2147483647
// Base used by numbers entered
define NUM_BASE 10
//Number of columns to print to
#define DIGIT_COLUMNS LCD_7_COLUMNS - 4

void keyboard_key_entry(struct entry *result)
{
char num[COLUMNS];
char prevKey;
int pos = DIGIT_COLUMNS;
int i, prevPos;

//Fills printable columns to remove junk data
for(i = 0; i < COLUMNS; i++)
{
num[i] = ’ ’;

}

for(;;)
{
int input = keyboard_key();
char key = (char) input;

if((key == ’+’ || key == ’*’ || key == ’/’ || key == ’-’
|| key == ’=’ || key == ’\r’) && key != prevKey)

{

Figure 10: Code for Lab 3 keyboard.c

14

result->operation = key;
int val = 0;
int numDigits = DIGIT_COLUMNS - pos;
if(pos == DIGIT_COLUMNS)
val = INT_MAX;

else
for(i = 1; i <= numDigits; i++) //Iterates through

number string, converting digits to their
numerical values

{
if(num[pos + i] != ’ ’)
{
int digit = num[pos + i] - ’0’;
for(j = 0; j < numDigits - i; j++)
digit *= NUM_BASE;

val += digit
}

}
result->number = val;
break;

}
else if((key >= ’0’ && key <= ’9’) && key != prevKey)
{

if(pos == DIGIT_COLUMNS) //Places digit in the first
column on first run

{
num[pos] = key;
prevPos = pos;
pos--;

}

Figure 11: Code for Lab 3 keyboard.c (Continued)

15

else
{
for(i = pos + 1; i <= DIGIT_COLUMNS; i++) //Shifts

numbers on the screen back one space
{
char temp = num[i];
num[i - 1] = temp;

}
num[DIGIT_COLUMNS] = key;
prevPos = pos;
pos--;

}
}

//Printing
if(pos != DIGIT_COLUMNS && pos != prevPos && input != -1)
lcd_print7(num);

//Stores the current key to prevent a single keypress from
entering multiple numbers

if(input == -1)
prevKey = ’ ’;

else
prevKey = (char) input;

}
}

Figure 12: Code for Lab 3 keyboard.c (Continued)

16

#include "AT91SAM7L128.h"
#include "lcd.h"
#include "keyboard.h"
#include "operations.h"

int main()
{
struct entry entry;
struct stack stack;
stack.pointer = 0;
// Disable the watchdog timer

*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

lcd_init();
keyboard_init();

for(;;)
{
keyboard_get_entry(&entry);
if(entry.number != INT_MAX)
push(&stack, entry.number);

performOperation(&stack, entry.operation);
lcd_print_int(peek(&stack));

}

return 0;
}

Figure 13: Code for Lab 4 main.c

17

#ifndef _OPERATIONS_H
define _OPERATIONS_H

define MAX_STACK_NUMBERS 7

struct stack {
int numbers[MAX_STACK_NUMBERS];
int pointer;

};

// Adds an item to the top of the stack
extern void push(struct stack *, int item);

// Returns the item at the top of the stack, and decrements
the pointer

extern int pop(struct stack *);

// Returns the item at the top of the stack
extern int peek(struct stack *);

// Checks if there is room in the stack (true = room)
extern int valid(struct stack *);

// Perform the indicated operation on the stack
extern void performOperation(struct stack *, char op);

#endif

Figure 14: Code for Lab 4 operations.c (Continued)

18

#include "operations.h"
#include "lcd.h"

void push(struct stack *stack, int item) {
//Places the item at the pointer then increments the

pointer
if(valid(stack))
stack->numbers[(stack->pointer)++] = item; }

int pop(struct stack *stack) {
//Decrements the pointer then retrieves the number at that

index
return stack->numbers[--(stack->pointer)]; }

int peek(struct stack *stack) {
//Retrieves the top number in the stack
return stack->numbers[stack->pointer - 1]; }

int valid(struct stack *stack) {
int hasRoom = 0;
if(stack->pointer < MAX_STACK_NUMBERS)
hasRoom = 1;

return hasRoom;
}

Figure 15: Code for Lab 4 operations.c

19

void performOperation(struct stack *stack, char op) {
if(stack->pointer == 1 && valid(stack)) return; //Prevents

operations with one value in stack
switch(op) {
case ’+’: {
push(stack, pop(stack) + pop(stack));
break;

} case ’-’: {
int temp = pop(stack);
push(stack, pop(stack) - temp);
break;

} case ’/’: {
int temp = pop(stack);
push(stack, pop(stack) / temp);
break;

} case ’*’: {
push(stack, pop(stack) * pop(stack));
break; }

}
}

Figure 16: Code for Lab 4 operations.c (Continued)

20

removing it from the top of the stack, and peek retrieves an item, without removing
it from the top of the stack. When an operation is given, it, along with the stack,
is sent to the operations library, where the top two items of the stack are popped,
the operations is performed, then they are pushed back into the stack. The system
then displays the result of the calculation, or the top item of the stack, in the case
of return, through the peek method.

This implementation is relatively robust, but there were several edge cases
that needed to be accounted for during testing. The most important was handling
overflow when more than the maximum number of entries were being added to the
stack. This was handled by discarding any numbers added once the stack reached
its maximum height. Another key implementation concern was dealing with the
pressing of the +/- button, after an operation had been entered, or return had been
pressed. It was determined that if only the item from the stack was present on the
screen, it should be made negative, and if any other numbers had been entered,
they should be made negative. There was also the case in which an operation
was entered without a number being pressed, as in 3 4 + +. This was handled
by discarding numerical information if the maximum possible integer value was
given. It as ensured that this value could never be entered on the calculator by
adding a hard cap to the greatest number that could be entered. The final case
that had to be accounted for was if an operation was attempted with nothing in the
stack, or if there was only one item in the stack. In either case, no operation would
be performed, but if a number were present with the operation, it would be treated
as a return. This meant that both [2] [INPUT] and [2] [+] were valid inputs that
both would produce the same changes in the stack.

7 Lessons Learned
This course taught us about the power of embedded programming, and the mean-
ing of hacking. It introduced us to a simple device, and showed us that within its
functionality there lay endless possibilities for expansion. It illustrated the abil-
ity of a system to be completely repurposed with a simple change in its source,
and proved to us that many everyday objects are actually computers at their core.
But, not everything about this course was focused around the boundless array of
functionality that can be added to everyday objects, there was also a good portion
of the course dedicated to showing us the necessity of designing quality software.
This portion of the course was perhaps the most beneficial, as it allowed us to see
the errors in our methodology, allowing them to be corrected before becoming
habit. However, as in all things, communication was necessary. We learned about
the inherent challenges and struggles in programming in a group in which there

21

were a variety of skill levels. We also learned that a seemingly simple problem can
have nearly endless complexity, and an outside perspective is sometimes required
to point out flaws in the logical structure in which we had become so entangled.
Most importantly of all, this course illustrated the potentially dramatic effects of
a populous realizing that everyday devices can be modified to have dramatically
different feature sets, and hopefully ignited a passion within us all to go out and
modify, create, repurpose, and redesign.

8 Criticism of the Course
This course was one of the most interesting and fun courses that most of us took
this year, and nearly every aspect was enjoyable. However, there were a couple of
minor gripes that seemed to persist within our group. One member felt that more
time should have been allotted to learning about the C programming language, as
it is difficult to pick up for someone without any prior programming experience.
Another felt that MatLab may not be necessary for Computer Science majors,
as they will learn other more powerful languages later, and will most likely use
Mathematica if they are planning on doing any work with mathematics. Yet a third
felt that a proper development environment, with a simulator might be a better fit
for the type of development we were doing. It would allow for simple errors to
be easily debugged, and may allow for faster course progression. Overall though,
criticisms were at a low for Professor Edwards himself, as his teaching style was
quite enjoyable, and often times hilarious.

References
[1] At91 arm thumb-based microcontroller preliminary. Online http://www.

atmel.com/dyn/resources/prod_documents/doc6257.pdf, February
2008.

[2] Hp-20b developer kit. Online http://h20000.www2.hp.com/
bizsupport/TechSupport/SoftwareIndex.jsp?lang=en&cc=
us&prodNameId=3732535&prodTypeId=215348&prodSeriesId=
3732534&swLang=13&taskId=135&swEnvOID=54, October 2009.

[3] Rpn, an introduction to reverse polish notation. Online http://h41111.
www4.hp.com/calculators/uk/en/articles/rpn.html, 2009.

22

http://www.atmel.com/dyn/resources/prod_documents/doc6257.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc6257.pdf
http://h20000.www2.hp.com/bizsupport/TechSupport/SoftwareIndex.jsp?lang=en&cc=us&prodNameId=3732535&prodTypeId=215348&prodSeriesId=3732534&swLang=13&taskId=135&swEnvOID=54
http://h20000.www2.hp.com/bizsupport/TechSupport/SoftwareIndex.jsp?lang=en&cc=us&prodNameId=3732535&prodTypeId=215348&prodSeriesId=3732534&swLang=13&taskId=135&swEnvOID=54
http://h20000.www2.hp.com/bizsupport/TechSupport/SoftwareIndex.jsp?lang=en&cc=us&prodNameId=3732535&prodTypeId=215348&prodSeriesId=3732534&swLang=13&taskId=135&swEnvOID=54
http://h20000.www2.hp.com/bizsupport/TechSupport/SoftwareIndex.jsp?lang=en&cc=us&prodNameId=3732535&prodTypeId=215348&prodSeriesId=3732534&swLang=13&taskId=135&swEnvOID=54
http://h41111.www4.hp.com/calculators/uk/en/articles/rpn.html
http://h41111.www4.hp.com/calculators/uk/en/articles/rpn.html

	Introduction
	User Guide
	Social Implications
	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Assembly Library
	LCD Library
	The Keyboard Library
	Program Layer

	Software Details
	Lab 1: A Scrolling Display (Figure 6)
	Lab 2: Scanning the Keyboard (Figure 7)
	Lab 3: Entering and Displaying Numbers (Figure 9, Figure 10, Figure 11, Figure 12)
	Lab 4: An RPN Calculator (Figure 13, Figure 14, Figure 15, Figure 16)

	Lessons Learned
	Criticism of the Course

