Fundamentals of Computer Systems Thinking Digitally

Stephen A. Edwards

Columbia University

Fall 2011

The Subject of this Class

0

The Subjects of this Class

1
Engineering Works Because of Abstraction

Application Software
Operating Systems
Architecture
Micro-Architecture
Logic
Digital Circuits
Analog Circuits

Devices

Physics

Engineering Works Because of Abstraction

Boring Stuff

http://www.cs.columbia.edu/~sedwards/classes/2011/3827-fall/
Prof. Stephen A. Edwards
sedwards@cs.columbia.edu
462 Computer Science Building

Class meets 10:35-11:50 AM Tuesdays and Thursdays in 633 Mudd

Lectures Sep 6-Dec 8
Holidays: Nov 8, Nov 24

Assignments and Grading

Weight What When

40\%	Six homeworks	See Webpage
30%	Midterm exam	October 25th
30\%	Final exam	9-12, December 20th

Homework is due at the beginning of lecture.
I will drop the lowest of your six homework scores; you

Rules and Regulations

You may collaborate with classmates on homework.
Each paper turned in must be unique; work must ultimately be your own.

List your collaborators on your homework.
Don't cheat: if you're stupid enough to try, we're smart enough to catch you.

Tests will be closed-book with a one-page "cheat sheet" of your own devising.

The Text

David Harris and Sarah Harris.

Digital Design and Computer Architecture.

Morgan-Kaufmann, 2007.
Almost precisely right for the scope of this class: digital logic and computer architecture

Digital Design and Computer Architecture

There are only 10 types of people in the world: Those who understand binary and those who don't.

Which Numbering System Should We Use？ Some Older Choices：

19	＜	$21 \ll$	${ }^{1}$ な ${ }^{\text {¢ }}$	4	
${ }^{2} \mathrm{~T}$	${ }_{12} \ll{ }^{\text {P }}$	22 ＜	32 ＜＜＜TT	42 T	Tr
3 TT	$13<\pi$	$23 \ll \pi$	$33 \lll 1$	43	${ }_{53} 8$ ¢ ${ }^{4}$
${ }_{4}$	13 ＜${ }^{\text {\％}}$	24 ＜${ }^{4}$	34 ＜＜\％	$4{ }^{4}$	sck
5	15 芴	25＜＜\％	35 ＊	45	
${ }_{6}{ }^{\text {\％}}$		26 《际	36 《＜＜	45 如登	
，頨	17 く登	27 ＜登	37＜＜	47 －${ }^{\text {否 }}$	－${ }^{\text {¢ }}$
${ }^{8}$	13 く器	28 ＜＜	30＜翠	40 根	
${ }^{\text {\％}}$	19《算	20 《敉算	$3{ }^{\text {¢ }}$ ¢	49	58
18	20 ＊	$30 \ll$	40	$50<8$	等

Babylonian：base 60

The Decimal Positional Numbering System

Ten figures: 0123456789
$7 \times 10^{2}+3 \times 10^{1}+0 \times 10^{0}=730_{10}$
$9 \times 10^{2}+9 \times 10^{1}+0 \times 10^{0}=990_{10}$

Why base ten?

Hexadecimal, Decimal, Octal, and Binary

Hex	Dec	Oct	Bin
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
A	10	12	1010
B	11	13	1011
C	12	14	1100
D	13	15	1101
E	14	16	1110
F	15	17	1111

Binary and Octal

	Oct	Bin
$\stackrel{\infty}{\circ}$	0	0
$\stackrel{\square}{-}$	1	1
ن	2	10
¢	3	11
¢	4	100
$\stackrel{\square}{0}$	5	101
-	6	110
	7	111

$$
\begin{aligned}
\mathrm{PC}= & 0 \times 2^{11}+1 \times 2^{10}+0 \times 2^{9}+1 \times 2^{8}+1 \times 2^{7}+0 \times 2^{6}+ \\
& 1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
= & 2 \times 8^{3}+6 \times 8^{2}+7 \times 8^{1}+5 \times 8^{0} \\
= & 1469_{10}
\end{aligned}
$$

Hexadecimal Numbers

Base 16: 0123456789 A B CDEF
Instead of groups of 3 bits (octal), Hex uses groups of 4 .

CAFEFOOD ${ }_{16}=12 \times 16^{7}+10 \times 16^{6}+15 \times 16^{5}+14 \times 16^{4}+$ $15 \times 16^{3}+0 \times 16^{2}+0 \times 16^{1}+13 \times 16^{0}$
$=3,405,705,229_{10}$

Computers Rarely Manipulate True Numbers

Infinite memory still very expensive
Finite-precision numbers typical
32-bit processor: naturally manipulates 32 -bit numbers
64-bit processor: naturally manipulates 64-bit numbers
How many different numbers can you binary
represent with $5 \begin{aligned} & \text { octal } \\ & \text { decimal }\end{aligned}$ digits? hexadecimal

Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")

Decimal Addition Algorithm

	+	0	1	2	3	4	5	6	7	8	9
	0	0	1	2	3	4	5	6	7	8	9
+628											
		1	1	2	3	4	5	6	7	8	9

Decimal Addition Algorithm

$$
\begin{array}{rr}
1 \\
434 \\
+628 \\
\hline 2
\end{array}
$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

Decimal Addition Algorithm

$$
\begin{aligned}
1 \\
434 \\
+628 \\
\hline 62
\end{aligned}
$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

Decimal Addition Algorithm

$$
\begin{aligned}
11 \\
434 \\
+628
\end{aligned} \quad \begin{aligned}
\\
\hline 062
\end{aligned}
$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

Decimal Addition Algorithm

$$
\left.\begin{array}{rl}
11 \\
434 \\
+628
\end{array}\right] \begin{aligned}
\\
\hline 1062
\end{aligned}
$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

Binary Addition Algorithm

10011
+11001

$$
1+1=10
$$

$$
\begin{array}{r|rr}
+ & 0 & 1 \\
\hline 0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
$$

Binary Addition Algorithm

$$
\begin{aligned}
& 1 \\
& 10011 \\
& +11001 \\
& 1+1=10 \\
& 1+1+0=10 \\
& \begin{array}{r|rr}
+ & 0 & 1 \\
\hline 0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\end{aligned}
$$

Binary Addition Algorithm

$$
\left.\begin{array}{rr}
11 \\
10011 \\
+11001 \\
00 & \\
\hline 1+1=10 & + \\
1+0 & \\
1+0 & 1
\end{array}\right)
$$

Binary Addition Algorithm

$$
\begin{aligned}
& 011 \\
& 10011 \\
& +11001 \\
& 100 \\
& \begin{array}{r}
1+1=10 \\
1+1+0=10 \\
1+0+0=01 \\
0+0+1=01
\end{array} \\
& \begin{array}{r|rr}
+ & 0 & 1 \\
\hline 0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\end{aligned}
$$

Binary Addition Algorithm

$$
\left.\begin{array}{rl}
0011 \\
10011 \\
+11001
\end{array}\right)
$$

Binary Addition Algorithm

$$
\left.\begin{array}{rl}
10011 \\
10011 \\
+11001
\end{array}\right)
$$

Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be represented?

Signed Magnitude Numbers

You are most familiar with this: negative numbers have a leading -

In binary, a
leading 1 means
negative:
$00002=0$
$0010_{2}=2$
$1010_{2}=-2$
$1111_{2}=-7$
$1000_{2}=-0$?

Can be made to work, but addition is annoying:

If the signs match, add the magnitudes and use the same sign.
If the signs differ, subtract the smaller number from the larger; return the sign of the larger.

One's Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative One's Complement number.
To negate a number, complement (flip) each bit.
$0000_{2}=0$
$0010_{2}=2$
$1101_{2}=-2$
$1000_{2}=-7$
$1111_{2}=-0$?

Addition is nicer: just add the one's complement numbers as if they were normal binary.
Really annoying having a -0: two numbers are equal if their bits are the same or if one is 0 and the other is -0 .

Norall ARE CREATED EQUAL

ZERO CALORIES. MAXIMUM PEPSI'TASTE.

Two's Complement Numbers

Really neat trick: make the most significant bit represent a negative number instead of positive:

$$
\begin{aligned}
& 1101_{2}=-8+4+1=-3 \\
& 1111_{2}=-8+4+2+1=-1 \\
& 0111_{2}=4+2+1=7 \\
& 1000_{2}=-8
\end{aligned}
$$

Easy addition: just add in binary and discard any carry. Negation: complement each bit (as in one's complement) then add 1.
Very good property: no -0
Two's complement numbers are equal if all their bits are the same.

Number Representations Compared

Bits Binary Signed One's Two's Mag. Comp. Comp.

0000	0	0	0	0
0001	1	1	1	1
\vdots				
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
\vdots				
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Smallest number
Largest number

Fixed-point Numbers

How to represent fractional numbers? In decimal, we continue with negative powers of 10:

$$
\begin{aligned}
31.4159= & 3 \times 10^{1}+1 \times 10^{0}+ \\
& 4 \times 10^{-1}+1 \times 10^{-2}+5 \times 10^{-3}+9 \times 10^{-4}
\end{aligned}
$$

The same trick works in binary:

$$
\begin{aligned}
1011.0110_{2}= & 1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}+ \\
& 0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4} \\
= & 8+2+1+0.25+0.125 \\
= & 11.375
\end{aligned}
$$

F
 $\begin{array}{cc}\mathrm{F} & \mathrm{a} \\ \mathrm{u} & \mathrm{C} \\ \text { Interesting }\end{array}$

The ancient Egyptians used binary fractions:

The Eye of Horus

Floating-point Numbers

How can we represent very large and small numbers with few bits?

Floating-point numbers: a kind of scientific notation
IEEE-754 floating-point numbers:
$\underbrace{1}_{\text {sign exponent }} \underbrace{10000001}_{\text {significand }} \underbrace{01100000000000000000000}$

$$
\begin{aligned}
& =-1.011_{2} \times 2^{129-127} \\
& =-1.375 \times 4 \\
& =-5.5
\end{aligned}
$$

Binary-Coded Decimal

thinkgeek.com

Humans prefer
reading decimal
numbers;
computers prefer binary.
$B C D$ is a
compromise:
every four bits
represents a decimal digit.

Dec
 BCD

000000000
100000001
200000010
$\begin{array}{rc}\vdots & \vdots \\ 8 & 00001000 \\ 9 & 00001001 \\ 10 & 00010000\end{array}$
1100010001

1900011000
2000100000

BCD Addition

Binary addition
followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

> 158
> +242

BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

$$
\begin{array}{rr}
000101011000 \\
+001001000010 \\
1010 & \\
+0110 & \text { First group } \\
+0 r r e c t i o n ~
\end{array}
$$

> 158
> +242

BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

$$
\begin{array}{r}
1 \\
158 \\
+242 \\
\hline 0
\end{array}
$$

BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

11
158
$+242$
00

BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

$$
\begin{array}{r}
11 \\
158 \\
+242 \\
\hline 400
\end{array}
$$

