Fundamentals of Computer Systems Thinking Digitally

Stephen A. Edwards

Columbia University

Fall 2011

The Subject of this Class

0

The Subjects of this Class

1

Engineering Works Because of Abstraction

Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics

Engineering Works Because of Abstraction

Application Software COMS 3157, 4156, et al.

Operating Systems **COMS W4118**

Architecture Second Half of 3827

Micro-Architecture Second Half of 3827

First Half of 3827

ELEN 3331

Logic First Half of 3827

Digital Circuits

Devices **ELEN 3106**

Analog Circuits

Physics FLFN 3106 et al.

Boring Stuff

```
http://www.cs.columbia.edu/~sedwards/classes/2011/3827-fall/
Prof. Stephen A. Edwards
sedwards@cs.columbia.edu
462 Computer Science Building
```

Class meets 10:35–11:50 AM Tuesdays and Thursdays in 633 Mudd

Lectures Sep 6-Dec 8

Holidays: Nov 8, Nov 24

Assignments and Grading

Weight	What	When
40%	Six homeworks	See Webpage
30%	Midterm exam	October 25th
30%	Final exam	9–12, December 20th

Homework is due at the beginning of lecture.

I will drop the lowest of your six homework scores; you

l Will	drop the lowest of	of your six homework scores; you
	skip	
	omit	
	forget	
	ignore	
can {	blow off	one with no penalty.
	screw up	
	feed to dog	
	flake out on	
	sleep through	
	•	

Rules and Regulations

You may collaborate with classmates on homework.

Each paper turned in must be unique; work must ultimately be your own.

List your collaborators on your homework.

Don't cheat: if you're stupid enough to try, we're smart enough to catch you.

Tests will be closed-book with a one-page "cheat sheet" of your own devising.

The Text

David Harris and Sarah Harris.

Digital Design and Computer Architecture.

Morgan-Kaufmann, 2007.

Almost precisely right for the scope of this class: digital logic and computer architecture

thinkgeek.com

Which Numbering System Should We Use? Some Older Choices:

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60

The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

$$7\times 10^2 + 3\times 10^1 + 0\times 10^0 = 730_{10}$$

$$9 \times 10^2 + 9 \times 10^1 + 0 \times 10^0 = 990_{10}$$

Why base ten?

Hexadecimal, Decimal, Octal, and Binary

Hex	Dec	Oct	Bin
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
Α	10	12	1010
В	11	13	1011
С	12	14	1100
D	13	15	1101
Ε	14	16	1110
F	15	17	1111

Binary and Octal

_		
	Oct	Bin
1968	0	0
	1	1
ن	2	10
	3	11
у-Ч Х	4	100
₫	5	101
<u>.</u>	6	110
Ğ.	7	111

PC =
$$0 \times 2^{11} + 1 \times 2^{10} + 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $2 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 5 \times 8^0$

$$= 1469_{10}$$

Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Instead of groups of 3 bits (octal), Hex uses groups of 4.

$$\begin{array}{lll} \text{CAFEF00D}_{16} & = & 12\times16^7+10\times16^6+15\times16^5+14\times16^4+\\ & & 15\times16^3+0\times16^2+0\times16^1+13\times16^0\\ & = & 3,405,705,229_{10} \end{array}$$

```
| C | A | F | E | F | 0 | 0 | D | Hex
110010101111111101111000000001101 Binary
| 3 | 1 | 2 | 7 | 7 | 5 | 7 | 0 | 0 | 1 | 5 | Octal
```

Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you binary octal decimal hexadecimal

Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")

	+	0	1	2	3	4	5	6	7	8	Ç
434	0	0	1	2	3	4	5	6	7	8	Ç
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8		10	11
	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
	8	8	9	10	11	12	13	14	15	16	17
	9	9	10	11	12	13	14	15	16	17	18
	10	10	11	12	13	14	15	16	17	18	19

1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8	9	10	11
2	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
	10	10	11	12	13	14	15	16	17	18	19

1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7		9
+628	1	1	2	3	4	5	6	7	8	9	10
- 620	2	2	3	4	5	6	7	8	9	10	11
62	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	_	-	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
4 0 40	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
1 . 2 . 2	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
4 + 6 = 10	10	10	11	12	13	14	15	16	17	18	19

1 1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8	9	10	11
062	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	_	-	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
1 . 2 . 2	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
4 + 6 = 10	10	10	11	12	13	14	15	16	17	18	19

1 1	+	0	1	2	3	4	5	6	7	8	9
434	0	0	1	2	3	4	5	6	7	8	9
+628	1	1	2	3	4	5	6	7	8	9	10
	2	2	3	4	5	6	7	8	9	10	11
1062	3	3	4	5	6	7	8	9	10	11	12
	4	4	5	6	7	8	9	10	11	12	13
	5	5	6	7	8	9	10	11	12	13	14
4 0 40	6	6	7	8	9	10	11	12	13	14	15
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16
1 . 2 . 2	8	8	9	10	11	12	13	14	15	16	17
1 + 3 + 2 = 6	9	9	10	11	12	13	14	15	16	17	18
4 + 6 = 10	10	10	11	12	13	14	15	16	17	18	19

$$10011 \\ +11001$$

$$1+1 = 10$$

+	0	1
0 1 10	00 01 10	

$$\begin{array}{r}
 11 \\
 10011 \\
 +11001 \\
 \hline
 00
 \end{array}$$

$$\begin{array}{rcl}
1+1 & = & 10 \\
1+1+0 & = & 10 \\
1+0+0 & = & 01
\end{array}$$

+	0 1
0	00 01
1	01 10
10	10 11

$$011\\10011\\+11001\\\hline 100$$

$$1+1 = 10$$
 $1+1+0 = 10$
 $1+0+0 = 01$
 $0+0+1 = 01$

+	0 :	1
0 1 10	00 <mark>0</mark> 3 01 10 10 13)

```
0011 \\ 10011 \\ +11001 \\ \hline 1100
```

$$1+1 = 10$$
 $1+1+0 = 10$
 $1+0+0 = 01$
 $0+0+1 = 01$
 $0+1+1 = 10$

```
10011 \\ 10011 \\ +11001 \\ \hline 101100
```

1 + 1	=	10
1 + 1 + 0	=	10
1 + 0 + 0	=	01
0 + 0 + 1	=	01
0 + 1 + 1	=	10

+	0 1
0	00 01
1	01 10
10	10 11

Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be represented?

Signed Magnitude Numbers

You are most familiar with this: negative numbers have a leading –

In binary, a leading 1 means negative:

$$0000_2 = 0$$

$$0010_2 = 2$$

$$1010_2 = -2$$

$$1111_2 = -7$$

$$1000_2 = -0$$
?

Can be made to work, but addition is annoying:

If the signs match, add the magnitudes and use the same sign.

If the signs differ, subtract the smaller number from the larger; return the sign of the larger.

One's Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative One's Complement number.

To negate a number, complement (flip) each bit.

0000_{2}	= 0
------------	-----

$$0010_2 = 2$$

$$1101_2 = -2$$

$$1000_2 = -7$$

$$1111_2 = -0$$
?

Addition is nicer: just add the one's complement numbers as if they were normal binary.

Really annoying having a -0: two numbers are equal if their bits are the same or if one is 0 and the other is -0.

NOTALL ZEROS ARE CREATED EQUAL

ZERO CALORIES. MAXIMUM PEPSI TASTE.

Two's Complement Numbers

Really neat trick: make the most significant bit represent a *negative* number instead of positive:

$$1101_2 = -8 + 4 + 1 = -3$$

$$1111_2 = -8 + 4 + 2 + 1 = -1$$

$$0111_2 = 4 + 2 + 1 = 7$$

$$1000_2 = -8$$

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one's complement) then add 1.

Very good property: no −0

Two's complement numbers are equal if all their bits are the same.

Number Representations Compared

Bits	Binary	_	One's Comp.	
0000	0	0	0	0
0001	1	1	1	1
:				
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
:				
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Smallest number Largest number

Fixed-point Numbers

How to represent fractional numbers? In decimal, we continue with negative powers of 10:

$$31.4159 = 3 \times 10^{1} + 1 \times 10^{0} + 4 \times 10^{-1} + 1 \times 10^{-2} + 5 \times 10^{-3} + 9 \times 10^{-4}$$

The same trick works in binary:

$$1011.0110_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4}$$
$$= 8 + 2 + 1 + 0.25 + 0.125$$
$$= 11.375$$

F F a u c Interesting

The ancient Egyptians used binary fractions:

The Eye of Horus

Floating-point Numbers

How can we represent very large and small numbers with few bits?

Floating-point numbers: a kind of scientific notation IEEE-754 floating-point numbers:

Binary-Coded Decimal

thinkgeek.com

Humans prefer reading decimal numbers; computers prefer binary.

BCD is a compromise:

every four bits represents a decimal digit.

Dec	BCD
0	0000 0000
1	00000001
2	00000010
:	:
8	00001000
9	00001001
10	00010000
11	00010001
:	:
19	00011000
20	00100000
:	:

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

 $\frac{+0010\,0100\,0010}{1010}$

0001 0101 1000

First group

158 + 242

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

0001	01011000	
+0010	01000010	
	1010	First group
	+ 0110	Correction

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

First group Correction Second group Correction Third group

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

