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Show your work for each problem; we are more interested in how you
get your answer than whether you get the right answer.



1. (10 pts.) How many seconds would it take to execute a program
with 4.5× 109 instructions on a 3 GHz processor able to run at 0.9
CPI?



2. (30 pts.) Modify the single-cycle MIPS processor shown on the next
page to implement the lb (“Load byte”) and lbu (“Load Byte
Unsigned”) instructions. They are encoded as shown below

lb rt, offset(base)

LB base rt offset
1 0 0 0 0 0

lbu rt, offset(base)

LBU
base rt offset

1 0 0 1 0 0

These instructions add the contents of the base register to a
sign-extended offset immediate to form an address, fetch a byte
from that address, and finally write the byte into the rt register.

The two instructions differ in how they handle the top 24 bits. lb
treats the byte as a signed value and sign-extends the most
significant bit of the byte across the top 24 bits; lbu treats the
byte as unsigned and simply fills the top 24 bits of rt with 0’s.

Start from the base single-cycle processor shown on the next page
and add components to the datapath, name any new control
signals, and show how to add to or modify the main decoder to
accommodate these new instructions.
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3. (35 pts.) Modify the single-cycle MIPS processor shown on the next
page to implement the bgezal (“Branch on Greater than or Equal
to Zero and Link”) instruction. This is encoded as shown below

bgezal rs, offset

REGIMM rs BGEZAL
offset

0 0 0 0 0 1 1 0 0 0 0

This instruction reads the register rs and, if it is greater than or
equal to zero, passes control to the instruction offset words away
from the PC (i.e., as the bne and other branch instructions do),
otherwise it passes control to the next instruction in series.

Regardless of the contents of rs, this instruction also writes the
value of PC + 4 into register 31 ($ra), providing the “and link”
function.

As in the previous problem, start from the base single-cycle
processor shown on the next page and add components and rules.
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4. (25 pts.) Instead of implementing it directly in hardware, the
bgezal instruction could be implemented as a pseudoinstruction:

bgezal rs, offset →
bltz rs, L1
jal offset

L1:

Suppose running this software implementation always took two
cycles while the hardware implementation took a single cycle, yet
increased the clock period by 10%. As a fraction of the number of
other instructions, how many bgezal instructions would a program
have to execute to make the hardware implementation faster?

E.g., if bgezal were never executed, the processor using a
hardware implementation would be 10% slower; if a program was
exclusively bgezal instructions (unlikely), a hardware solution
would be nearly twice as fast.


