
CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 5

Prof. Stephen A. Edwards

Columbia University

Due November 29th, 2011 at 10:35 AM

Show your work for each problem; we are more interested in how you
get your answer than whether you get the right answer.



1. (10 pts.) How many seconds would it take to execute a program
with 4.5× 109 instructions on a 3 GHz processor able to run at 0.9
CPI?



2. (30 pts.) Modify the single-cycle MIPS processor shown on the next
page to implement the lb (“Load byte”) and lbu (“Load Byte
Unsigned”) instructions. They are encoded as shown below

lb rt, offset(base)

LB base rt offset
1 0 0 0 0 0

lbu rt, offset(base)

LBU
base rt offset

1 0 0 1 0 0

These instructions add the contents of the base register to a
sign-extended offset immediate to form an address, fetch a byte
from that address, and finally write the byte into the rt register.

The two instructions differ in how they handle the top 24 bits. lb
treats the byte as a signed value and sign-extends the most
significant bit of the byte across the top 24 bits; lbu treats the
byte as unsigned and simply fills the top 24 bits of rt with 0’s.

Start from the base single-cycle processor shown on the next page
and add components to the datapath, name any new control
signals, and show how to add to or modify the main decoder to
accommodate these new instructions.



SignImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory

WD

WE
0

1

PC0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

Inst. OP RegWrite RegDst ALUSrc Branch MemWrite MemToReg ALUOp

R-type 000000 1 1 0 0 0 0 1-
lw 100011 1 0 1 0 0 1 00
sw 101011 0 - 1 0 1 - 00
beq 000100 0 - 0 1 0 - 01



3. (35 pts.) Modify the single-cycle MIPS processor shown on the next
page to implement the bgezal (“Branch on Greater than or Equal
to Zero and Link”) instruction. This is encoded as shown below

bgezal rs, offset

REGIMM rs BGEZAL
offset

0 0 0 0 0 1 1 0 0 0 0

This instruction reads the register rs and, if it is greater than or
equal to zero, passes control to the instruction offset words away
from the PC (i.e., as the bne and other branch instructions do),
otherwise it passes control to the next instruction in series.

Regardless of the contents of rs, this instruction also writes the
value of PC + 4 into register 31 ($ra), providing the “and link”
function.

As in the previous problem, start from the base single-cycle
processor shown on the next page and add components and rules.



SignImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory

WD

WE
0

1

PC0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

Inst. OP RegWrite RegDst ALUSrc Branch MemWrite MemToReg ALUOp

R-type 000000 1 1 0 0 0 0 1-
lw 100011 1 0 1 0 0 1 00
sw 101011 0 - 1 0 1 - 00
beq 000100 0 - 0 1 0 - 01



4. (25 pts.) Instead of implementing it directly in hardware, the
bgezal instruction could be implemented as a pseudoinstruction:

bgezal rs, offset →
bltz rs, L1
jal offset

L1:

Suppose running this software implementation always took two
cycles while the hardware implementation took a single cycle, yet
increased the clock period by 10%. As a fraction of the number of
other instructions, how many bgezal instructions would a program
have to execute to make the hardware implementation faster?

E.g., if bgezal were never executed, the processor using a
hardware implementation would be 10% slower; if a program was
exclusively bgezal instructions (unlikely), a hardware solution
would be nearly twice as fast.


