CSEE W3827 Fundamentals of Computer Systems Homework Assignment 1 Solutions

Prof. Stephen A. Edwards Columbia University Due September 20th, 2011 at 10:35 AM

Show your work for each problem; we are more interested in how you get the answer than whether you get the right answer.

This document is formatted for on-screen viewing.

1. What are the values, in decimal, of the bytes

10011100

and

01111000,

if they are interpreted as 8-bit

- (a) Binary numbers? $10011100_2 = 128 + 16 + 8 + 4 = 156;$ $01111000_2 = 64 + 32 + 16 + 8 = 120$
- (b) One's complement numbers? $-(1100011_2) = -(64 + 32 + 2 + 1) = -99;$ $01111000_2 = 64 + 32 + 16 + 8 = 120$
- (c) Two's complement numbers? $10011100_2 = -128 + 16 + 8 + 4 = -100 \text{ or}$ 01100011 + 1 = 01100100 = 64 + 32 + 4 = -100; $01111000_2 = 64 + 32 + 16 + 8 = 120$

- 2. The DEC PDP-8 used 12-bit words.
 - (a) What were the most negative and most positive decimal numbers one of its words could represent using two's complement?

 $-2^{11} = -2048$ and $2^{11} - 1 = 2047$

(b) Assuming a word represented an address in memory, how many different locations could the PDP-8 address? $2^{12} = 4096$

- 3. Convert the hexadecimal number "DEAD" into
 - (a) Binary 1101111010101101
 - (b) Octal

157255 (interpret groups of three bits)

- (c) Decimal $13 \cdot 16^3 + 14 \cdot 16^2 + 10 \cdot 16^1 + 13 \cdot 16^0 = 57005$
- (d) Binary-Coded Decimal

 $57005_{10} = 0101\,0111\,0000\,0000\,0101_{BCD}$

- 4. Show that 2 + -7 = -5 is also true when done in binary using
 - (a) Signed-magnitude numbers 0010 + 1111 = -(111 - 010) = -(101) = 1101Make sure you strip off the sign bits
 - (b) One's complement numbers 0010 + 1000 = 1010 = -(0101) (normal binary addition)
 - (c) Two's complement numbers 0010 + 1001 = 1011 = -(101) (normal binary addition)

5. Show 42 + 49 = 91 in BCD. Make sure you show when corrections are necessary to normal binary addition.

01000010

+ 01001001

1000 1011 The result of normal binary addition

+ 0110 Add 6 since this digit exceeded 9

10010001

6. Complete the truth table for the following Boolean functions:

(a) $XY\overline{Z} + X\overline{Y}Z + \overline{X}YZ$

(b) $(X+Y)(Y+Z)(X+\overline{Z})$

Χ	Υ	Ζ	а	b
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

7. Consider the function *F*, whose truth table is below.

(a) Write *F* as a sum of minterms and draw the corresponding circuit.

 $\overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + X\overline{Y}Z + XYZ$

(b) Write *F* as a product of maxterms and draw the corresponding circuit.

 $(X + Y + Z)(X + \overline{Y} + \overline{Z})(\overline{X} + \overline{Y} + Z)$

(c) Complete the Karnaugh map for F as shown below.

- 8. Consider the function $F = \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$
 - (a) Simplify the function using a Karnaugh map: draw the map *F*, circle implicants, and write the simplified function in algebraic form.

(b) Show how applying the axioms of Boolean algebra can produce the same result.

$$F = \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$$

= $\overline{Z}(\overline{X}\overline{Y} + \overline{X}Y + X\overline{Y} + XY)$
= $\overline{Z}(\overline{X}(\overline{Y} + Y) + X(\overline{Y} + Y))$
= $\overline{Z}(\overline{X}1 + X1)$
= $\overline{Z}(\overline{X} + X)$
= $\overline{Z}1$
= \overline{Z}

- 9. Design a circuit that takes two two-bit binary numbers (A_1 and A_0 , B_1 and B_0) and produces a true output when, in binary, A is strictly greater than B.
- (a) Fill in the truth table
- (b) Fill in the Karnaugh map and use it to minimize

 $A_1\overline{B_1} + A_0\overline{B_0}\overline{B_1} + A_0A_1\overline{B_0}$

(c) Draw the circuit you derived from the map in part (b).

A_1	A_0	B_1	B_0	A > B
0	0	0	0	0
	0	0	1	0
0 0 0 0	0	1	1 0	0
0	0	1		0
0	1	0	1 0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1 0	0
1	0	0	0	1
1	0	0	1	1
1	0	1	1 0	0
1 1 1 1	0	1	1 0	0
1	1	0	0	1
1	1	0	1 0	1
1	1	1		1
1	1	1	1	0

