CSEE W3827

Fundamentals of Computer Systems
 Homework Assignment 1
 Solutions

Prof. Stephen A. Edwards
Columbia University
Due September 20th, 2011 at 10:35 AM

Show your work for each problem; we are more interested in how you get the answer than whether you get the right answer.
This document is formatted for on-screen viewing.

1. What are the values, in decimal, of the bytes

$$
10011100
$$

and
01111000,
if they are interpreted as 8-bit
(a) Binary numbers?
$100111002=128+16+8+4=156$;
$011110000_{2}=64+32+16+8=120$
(b) One's complement numbers?
$-\left(1100011_{2}\right)=-(64+32+2+1)=-99$;
$011110002=64+32+16+8=120$
(c) Two's complement numbers?
$10011100_{2}=-128+16+8+4=-100$ or
$01100011+1=01100100=64+32+4=-100$;
$011110002=64+32+16+8=120$
2. The DEC PDP-8 used 12-bit words.
(a) What were the most negative and most positive decimal numbers one of its words could represent using two's complement?
$-2^{11}=-2048$ and $2^{11}-1=2047$
(b) Assuming a word represented an address in memory, how many different locations could the PDP-8 address?
$2^{12}=4096$

3. Convert the hexadecimal number "DEAD" into
(a) Binary

1101111010101101
(b) Octal

157255 (interpret groups of three bits)
(c) Decimal
$13 \cdot 16^{3}+14 \cdot 16^{2}+10 \cdot 16^{1}+13 \cdot 16^{0}=57005$
(d) Binary-Coded Decimal
$57005_{10}=01010111000000000101_{B C D}$
4. Show that $2+-7=-5$ is also true when done in binary using
(a) Signed-magnitude numbers
$0010+1111=-(111-010)=-(101)=1101$
Make sure you strip off the sign bits
(b) One's complement numbers
$0010+1000=1010=-(0101)($ normal binary addition)
(c) Two's complement numbers
$0010+1001=1011=-(101)($ normal binary addition $)$
5. Show $42+49=91$ in BCD. Make sure you show when corrections are necessary to normal binary addition.

6. Complete the truth table for the following Boolean functions:

\mathbf{X}	Y	Z	a	b
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

7. Consider the function F, whose truth table is below.

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

(a) Write F as a sum of minterms and draw the corresponding circuit.

$$
\bar{X} \bar{Y} Z+\bar{X} Y \bar{Z}+X \bar{Y} \bar{Z}+X \bar{Y} Z+X Y Z
$$

(b) Write F as a product of maxterms and draw the corresponding circuit.
$(X+Y+Z)(X+\bar{Y}+\bar{Z})(\bar{X}+\bar{Y}+Z)$
(c) Complete the Karnaugh map for F as shown below.

8. Consider the function $F=\bar{X} \bar{Y} \bar{Z}+\bar{X} Y \bar{Z}+X \bar{Y} \bar{Z}+X Y \bar{Z}$
(a) Simplify the function using a Karnaugh map: draw the map F, circle implicants, and write the simplified function in algebraic form.

(b) Show how applying the axioms of Boolean algebra can produce the same result.

$$
\begin{aligned}
F & =\bar{X} \bar{Y} \bar{Z}+\bar{X} Y \bar{Z}+X \bar{Y} \bar{Z}+X Y \bar{Z} \\
& =\bar{Z}(\bar{X} \bar{Y}+\bar{X} Y+X \bar{Y}+X Y) \\
& =\bar{Z}(\bar{X}(\bar{Y}+Y)+X(\bar{Y}+Y)) \\
& =\bar{Z}(\bar{X} 1+X 1) \\
& =\bar{Z}(\bar{X}+X) \\
& =\bar{Z} 1 \\
& =\bar{Z}
\end{aligned}
$$

9. Design a circuit that takes two two-bit binary numbers (A_{1} and A_{0}, B_{1} and B_{0}) and produces a true output when, in binary, A is strictly greater than B.
(a) Fill in the truth table
(b) Fill in the Karnaugh map and use it to minimize

A_{1}	A_{0}	B_{1}	B_{0}	$A>B$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

