Fundamentals of Computer Systems
 Finite State Machines

Stephen A. Edwards

Columbia University
Fall 2011

Finite State Machine Components

Moore and Mealy Machines

The Moore Form:

Outputs are a function of only the current state.

Moore and Mealy Machines

The Mealy Form:
Outputs may be a function of both the current state and the inputs.

A mnemonic: Moore machines often have more states.

Mealy Machines are the Most General

Another, equivalent way of drawing Mealy Machines
This is exactly the synchronous digital logic paradigm

Moore vs. Mealy FSMs

Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last four digits it has crawled over are 1101.
Design Moore and Mealy FSMs of the snail's brain.

State Transition Diagrams: Looking for "1101"

Moore Machine: States indicate output

State Transition Diagrams: Looking for "1101"

Moore Machine: States indicate output

State Transition Diagrams: Looking for "1101"

Moore Machine: States indicate output

State Transition Diagrams: Looking for "1101"

Moore Machine: States indicate output

State Transition Diagrams: Looking for "1101"

Moore Machine: States indicate output

Mealy Machine: Arcs indicate input/output

State Transition Diagrams: Looking for "1101"

Moore Machine: States indicate output

Mealy Machine: Arcs indicate input/output

State Transition Diagrams: Looking for "1101"

Moore Machine: States indicate output

Mealy Machine: Arcs indicate input/output

State Transition Diagrams: Looking for "1101"

Moore Machine: States indicate output

Mealy Machine: Arcs indicate input/output

Moore Machine

Next State			Output	
S	A	S'	S	Y
S0	0	S0	S0	0
S0	1	S1	S1	0
S1	0	S0	S2	0
S1	1	S2	S3	0
S2	0	S3	S4	1
S2	1	S2		
S3	0	S0		
S3	1	S4		
S4	0	S0		
S4	1	S2		

Moore Machine

Next State			Output	
S	A	S'	S	Y
000	0	000	000	0
000	1	001	001	0
001	0	000	010	0
001	1	010	011	0
010	0	011	100	1
010	1	010		
011	0	000		
011	1	100		
100	0	000		
100	1	010		

Mealy Machine

\mathbf{S}	\mathbf{A}	\mathbf{S}	\mathbf{Y}
S0	0	S0	0
S0	1	S1	0
S1	0	S0	0
S1	1	S2	0
S2	0	S3	0
S2	1	S2	0
S3	0	S0	0
S3	1	S1	1

Mealy Machine

\mathbf{S}	\mathbf{A}	\mathbf{S}	\mathbf{Y}
00	0	00	0
00	1	00	0
01	0	00	0
01	1	10	0
10	0	11	0
10	1	10	0
11	0	00	0
11	1	01	1

More Intuitive Solutions using Shift Registers

Mealy Form: Output Depends on Input Immediately

Moore Form: Output Depends Only on State

FSM Example: A Traffic Light Controller

Source: Mead and Conway, Introduction to VLSI Systems, 1980, p. 85.

State Transition Diagram for the TLC

Inputs:
C: Car sensor
S: Short Timeout
L: Long Timeout

Outputs:
T: Timer Reset
H: Highway color
F: Farm road color

State Transition Diagram for the TLC

$$
\bar{C}+\bar{L} / \bar{T}
$$

Inputs:
C: Car sensor
S: Short Timeout
L: Long Timeout

Outputs:
T: Timer Reset
H: Highway color
F: Farm road color

State Transition Diagram for the TLC

Inputs:
C: Car sensor
S: Short Timeout
L: Long Timeout

Outputs:
T: Timer Reset
H: Highway color
F: Farm road color

State Transition Diagram for the TLC

State and Output Encoding

$\mathbf{S} \mathbf{C} \mathbf{S} \mathbf{L} \quad \mathbf{S}$

HG $0 \times X \quad X \quad 0 \quad$ HG HG $\quad X \quad X \quad 0 \quad 0 \quad H G$ HG $1 \begin{array}{llllll} & X & 1 & 1 & H Y\end{array}$ MY X $0 \quad$ X $0 \quad$ MY WY \quad X $1 \quad 1 \quad X \quad 1 \quad$ PG
FF $1 \begin{array}{lllll} & X & 0 & 0 & F G\end{array}$ PG $\quad 0 \quad X \quad X \quad X \quad 1 \quad F Y$ EG $\quad X \quad X \quad 1 \quad 1 \quad$ FY FY $\quad \mathrm{X} \quad 0 \quad \mathrm{X} \quad 0 \quad \mathrm{FY}$
FY \quad X $\quad 1 \quad \mathrm{X} \quad 1 \mathrm{HG}$

$\mathbf{S} \mathbf{H}$ F

HG GR
MY Y R
EG $R \quad G$
FY R Y

State and Output Encoding

$\mathbf{S} \mathbf{C} \mathbf{S} \mathbf{L}$ S'

00	0	X	X	0	00
00	X	X	0	0	00
00		x	1	1	01
01	X	0	X	0	01
01	x	1	X	1	10
	1	x	0	0	10
10	0	x	x	1	11
10	X	X	1	1	11
11	X	0	X	0	

\mathbf{S}	\mathbf{H}	\mathbf{F}
00	00	10
01	01	10
10	10	00
11	10	01

State and Output Encoding

$\mathbf{S} \mathbf{C} \mathbf{S} \mathbf{L} \quad \mathbf{S}$

00	0	X	X	0	00
00	X	X	0	0	00
00	1	X	1	1	01
01	X	0	X	0	01
01	X	1	X	1	10
10	1	X	0	0	10
10	0	X	X	1	11
10	X	X	1	1	11
11	X	0	X	0	11
11	X	1	X	1	00

\mathbf{S}	\mathbf{H}	\mathbf{F}
00	00	10
01	01	10
10	10	00
11	10	01

State and Output Encoding

$\mathbf{S} \mathbf{C} \mathbf{S} \mathbf{L}$ S'

00	0	X	X	0	00
00	X	X	0	0	00
00	1	X	1	1	01
01	X	0	X	0	01
01	X	1	X	1	10
10	1	X	0	0	10
10	0	X	X	1	11
10	X	X	1	1	11
11	X	0	X	0	11
11	X	1	X	1	00
\mathbf{S}	\mathbf{H}	\mathbf{F}			
00	00	10			
01	01	10			
10	10	00			
11	10	01			

$$
\begin{aligned}
T= & \overline{S_{0}}\left(\overline{S_{1}} C L+S_{1}(\bar{C}+L)\right)+ \\
& S_{0} S \\
S_{1}^{\prime}= & S_{0} S+S_{1} \overline{S_{0}} \\
S_{0}^{\prime}= & \overline{S_{0}}\left(\overline{S_{1}} C L+S_{1}(\bar{C}+L)\right)+ \\
& S_{0} \bar{S} \\
H_{1}= & S_{1}
\end{aligned}
$$

$$
H_{0}=\overline{S_{1}} S_{0}
$$

$$
F_{1}=\overline{S_{1}}
$$

$$
F_{0}=S_{1} S_{0}
$$

State and Output Encoding

$$
\begin{aligned}
& T= \overline{S_{0}}\left(\overline{S_{1}} C L+S_{1}(\bar{C}+L)\right)+ \\
& S_{0} S \\
& S_{1}^{\prime}= S_{0} S+S_{1} \overline{S_{0}} \\
& S_{0}^{\prime}= \overline{S_{0}}\left(\overline{S_{1}} C L+S_{1}(\bar{C}+L)\right)+ \\
& S_{0} \bar{S} \\
& H_{1}= S_{1} \\
& H_{0}= \overline{S_{1}} S_{0} \\
& F_{1}= \overline{S_{1}} \\
& F_{0}= S_{1} S_{0}
\end{aligned}
$$

State and Output Encoding

$\mathbf{S} \mathbf{C} \mathbf{S} \mathbf{L} \quad \mathbf{S}$

 HG $0 \times X \quad 0 \quad$ HG HG $\quad X \quad X \quad 0 \quad 0 \quad H G$ HG $1 \begin{array}{llllll} & X & 1 & 1 & H Y\end{array}$ WY X $0 \quad X \quad 0 \quad$ MY WY \quad X $1 \quad 1 \quad X \quad 1 \quad$ PGFF $1 \begin{array}{lllll} & X & 0 & 0 & F G\end{array}$ EG $\quad 0 \quad X \quad X \quad 1 \quad \mathrm{FY}$ EG $\quad X \quad X \quad 1 \quad 1 \quad F Y$ FY $\quad \mathrm{X} \quad 0 \quad \mathrm{X} \quad 0 \quad \mathrm{FY}$
FY $\quad \mathrm{X} \quad 1 \quad \mathrm{X} \quad 1 \mathrm{HG}$

\mathbf{S}	\mathbf{H}	\mathbf{F}

HG	G	R
FY	Y	R
PG	R	G
FY	R	Y

State and Output Encoding

$\mathbf{S} \quad \mathbf{C} \mathbf{S} \mathbf{T} \quad \mathbf{S}$

0001	0	X	X	0	0001
0001	X	X	0	0	0001
0001	1	X	1	1	0010
0010	X	0	X	0	0010
0010	X	1	X	1	0100
0100	1	X	0	0	0100
0100	0	X	X	1	1000
0100	X	X	1	1	1000
1000	X	0	X	0	1000
1000	X	1	X	1	0001

\mathbf{S}	\mathbf{H}	\mathbf{F}
0001	001	100
0010	010	100
0100	100	001
1000	100	010

$$
\begin{aligned}
T= & S_{0} C L+S_{1} S+ \\
& S_{2}(\bar{C}+L)+S_{3} S \\
S_{3}^{\prime}= & S_{2}(\bar{C}+L)+S_{3} \bar{S} \\
S_{2}^{\prime}= & S_{1} S+S_{2}(\overline{\bar{C}}+L) \\
S_{1}^{\prime}= & S_{0} C L+S_{1} \bar{S} \\
S_{0}^{\prime}= & S_{0} \overline{(C L)}+S_{3} S \\
H_{R}= & S_{2}+S_{3} \\
H_{Y}= & S_{1}
\end{aligned}
$$

$$
H_{G}=S_{0}
$$

$$
F_{R}=S_{0}+S_{1}
$$

$$
F_{Y}=S_{3}
$$

$$
F_{G}=S_{2}
$$

State and Output Encoding

