
Fundamentals of Computer Systems
Boolean Logic

Stephen A. Edwards

Columbia University

Fall 2011



Boolean Logic

George Boole
1815–1864



Boole’s Intuition Behind Boolean Logic

Variables x, y, . . . represent classes of things

No imprecision: A thing either is or is not in a class

If x is “sheep”
and y is “white
things,” xy are
all white sheep,

xy = yx

and

xx = x.

If x is “men” and
y is “women,”
x+ y is “both
men and
women,”

x+ y = y+ x

and

x+ x = x.

If x is “men,” y
is “women,” and
z is “European,”
z(x+ y) is
“European men
and women”
and

z(x+y) = zx+zy.



The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A
An “and” operator ∧
An “or” operator ∨

A “not” operator ¬
A “false” value 0 ∈ A
A “true” value 1 ∈ A

Axioms

a∨ b = b∨ a a∧ b = b∧ a
a∨ (b∨ c) = (a∨ b)∨ c a∧ (b∧ c) = (a∧ b)∧ c
a∨ (a∧ b) = a a∧ (a∨ b) = a
a∧ (b∨ c) = (a∧ b)∨ (a∧ c) a∨ (b∧ c) = (a∨ b)∧ (a∨ c)

a∨¬a = 1 a∧¬a = 0

We will use the first non-trivial Boolean Algebra:
A = {0,1}. This adds the law of excluded middle: if
a 6= 0 then a = 1 and if a 6= 1 then a = 0.



The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A
An “and” operator ∧
An “or” operator ∨

A “not” operator ¬
A “false” value 0 ∈ A
A “true” value 1 ∈ A

Axioms

a∨ b = b∨ a a∧ b = b∧ a
a∨ (b∨ c) = (a∨ b)∨ c a∧ (b∧ c) = (a∧ b)∧ c
a∨ (a∧ b) = a a∧ (a∨ b) = a
a∧ (b∨ c) = (a∧ b)∨ (a∧ c) a∨ (b∧ c) = (a∨ b)∧ (a∨ c)

a∨¬a = 1 a∧¬a = 0

We will use the first non-trivial Boolean Algebra:
A = {0,1}. This adds the law of excluded middle: if
a 6= 0 then a = 1 and if a 6= 1 then a = 0.



The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A
An “and” operator ∧
An “or” operator ∨

A “not” operator ¬
A “false” value 0 ∈ A
A “true” value 1 ∈ A

Axioms

a∨ b = b∨ a a∧ b = b∧ a
a∨ (b∨ c) = (a∨ b)∨ c a∧ (b∧ c) = (a∧ b)∧ c
a∨ (a∧ b) = a a∧ (a∨ b) = a
a∧ (b∨ c) = (a∧ b)∨ (a∧ c) a∨ (b∧ c) = (a∨ b)∧ (a∨ c)

a∨¬a = 1 a∧¬a = 0

We will use the first non-trivial Boolean Algebra:
A = {0,1}. This adds the law of excluded middle: if
a 6= 0 then a = 1 and if a 6= 1 then a = 0.



Simplifying a Boolean Expression

“You are a New Yorker if you were born in New York or
were not born in New York and lived here ten years.”

x∨
�

(¬x)∧ y
�

=
�

x∨ (¬x)
�

∧ (x∨ y)

= 1∧ (x∨ y)

= x∨ y

Axioms

a∨ b= b∨ a
a∧ b= b∧ a

a∨ (b∨ c) = (a∨ b)∨ c
a∧ (b∧ c) = (a∧ b)∧ c

a∨ (a∧ b) = a
a∧ (a∨ b) = a

a∧ (b∨ c) = (a∧ b)∨ (a∧ c)
a∨ (b∧ c) = (a∨ b)∧ (a∨ c)

a∨¬a= 1
a∧¬a= 0

Lemma:

x∧ 1 = x∧ (x∨¬x)

= x∧ (x∨ y) if y = ¬x

= x



Simplifying a Boolean Expression

“You are a New Yorker if you were born in New York or
were not born in New York and lived here ten years.”

x∨
�

(¬x)∧ y
�

=
�

x∨ (¬x)
�

∧ (x∨ y)

= 1∧ (x∨ y)

= x∨ y

Axioms

a∨ b= b∨ a
a∧ b= b∧ a

a∨ (b∨ c) = (a∨ b)∨ c
a∧ (b∧ c) = (a∧ b)∧ c

a∨ (a∧ b) = a
a∧ (a∨ b) = a

a∧ (b∨ c) = (a∧ b)∨ (a∧ c)
a∨ (b∧ c) = (a∨ b)∧ (a∨ c)

a∨¬a= 1
a∧¬a= 0

Lemma:

x∧ 1 = x∧ (x∨¬x)

= x∧ (x∨ y) if y = ¬x

= x



Simplifying a Boolean Expression

“You are a New Yorker if you were born in New York or
were not born in New York and lived here ten years.”

x∨
�

(¬x)∧ y
�

=
�

x∨ (¬x)
�

∧ (x∨ y)

= 1∧ (x∨ y)

= x∨ y

Axioms

a∨ b= b∨ a
a∧ b= b∧ a

a∨ (b∨ c) = (a∨ b)∨ c
a∧ (b∧ c) = (a∧ b)∧ c

a∨ (a∧ b) = a
a∧ (a∨ b) = a

a∧ (b∨ c) = (a∧ b)∨ (a∧ c)
a∨ (b∧ c) = (a∨ b)∧ (a∨ c)

a∨¬a= 1
a∧¬a= 0

Lemma:

x∧ 1 = x∧ (x∨¬x)

= x∧ (x∨ y) if y = ¬x

= x



Simplifying a Boolean Expression

“You are a New Yorker if you were born in New York or
were not born in New York and lived here ten years.”

x∨
�

(¬x)∧ y
�

=
�

x∨ (¬x)
�

∧ (x∨ y)

= 1∧ (x∨ y)

= x∨ y

Axioms

a∨ b= b∨ a
a∧ b= b∧ a

a∨ (b∨ c) = (a∨ b)∨ c
a∧ (b∧ c) = (a∧ b)∧ c

a∨ (a∧ b) = a
a∧ (a∨ b) = a

a∧ (b∨ c) = (a∧ b)∨ (a∧ c)
a∨ (b∧ c) = (a∨ b)∧ (a∨ c)

a∨¬a= 1
a∧¬a= 0

Lemma:

x∧ 1 = x∧ (x∨¬x)

= x∧ (x∨ y) if y = ¬x

= x



What Does This Have To Do With Logic Circuits?

Claude Shannon
1916–2001



Shannon’s MS Thesis

“We shall limit our treatment to circuits containing only
relay contacts and switches, and therefore at any given
time the circuit between any two terminals must be
either open (infinite impedance) or closed (zero
impedance).



Shannon’s MS Thesis

“It is evident that with the above definitions the following postulates hold.

0 · 0 = 0 A closed circuit in parallel with a closed circuit is a
closed circuit.

1+ 1 = 1 An open circuit in series with an open circuit is an open
circuit.

1+ 0 = 0+ 1 = 1 An open circuit in series with a closed circuit in either
order is an open circuit.

0 · 1 = 1 · 0 = 0 A closed circuit in parallel with an open circuit in either
order is an closed circuit.

0+ 0 = 0 A closed circuit in series with a closed circuit is a
closed circuit.

1 · 1 = 1 An open circuit in parallel with an open circuit is an
open circuit.

At any give time either X = 0 or X = 1



Alternate Notations for Boolean Logic

Operator Math Engineer Schematic

Copy x X X or X X

Complement ¬x X X X

AND x∧ y XY or X · Y X

Y
XY

OR x∨ y X+ Y X

Y
X+ Y



Definitions

Literal: a Boolean variable or its complement

E.g., X X Y Y

Implicant: A product of literals

E.g., X XY XYZ

Minterm: An implicant with each variable once

E.g., XYZ XYZ XYZ

Maxterm: A sum of literals with each variable once

E.g., X+ Y +Z X+ Y +Z X+ Y +Z



Be Careful with Bars

XY 6= XY

Let’s check all the combinations of X and Y:

X Y X Y X · Y XY XY

0 0 1 1 1 0 1
0 1 1 0 0 0 1
1 0 0 1 0 0 1
1 1 0 0 0 1 0



Truth Tables

A truth table is a canonical representation of a Boolean
function

X Y Minterm Maxterm X XY XY X+ Y X+ Y

0 0 XY X+ Y 1 0 1 0 1
0 1 XY X+ Y 1 0 1 1 0
1 0 XY X+ Y 0 0 1 1 0
1 1 XY X+ Y 0 1 0 1 0

Each row has a unique minterm and maxterm

The
minterm is 1
maxterm is 0 for only its row



Sum-of-minterms and Product-of-maxterms
Two mechanical ways to translate a function’s truth
table into an expression:

X Y Minterm Maxterm F

0 0 XY X+ Y 0
0 1 XY X+ Y 1
1 0 XY X+ Y 1
1 1 XY X+ Y 0

The sum of the minterms where the function is 1:

F = XY +XY

The product of the maxterms where the function is 0:

F = (X+ Y)(X+ Y)



Expressions to Schematics

F = XY +XY

= (X+ Y)(X+ Y)

X

Y

X

Y

XY

XY

XY +XY = F

(X+ Y)(X+ Y) = F



Expressions to Schematics

F = XY +XY

= (X+ Y)(X+ Y)

X

Y

X

Y

XY

XY

XY +XY = F

(X+ Y)(X+ Y) = F



Expressions to Schematics

F = XY +XY

= (X+ Y)(X+ Y)

X

Y

X

Y

XY

XY

XY +XY = F

(X+ Y)(X+ Y) = F



Expressions to Schematics

F = XY +XY

= (X+ Y)(X+ Y)

X

Y

X

Y

XY

XY

XY +XY = F

(X+ Y)(X+ Y) = F



Expressions to Schematics

F = XY +XY

= (X+ Y)(X+ Y)

X

Y

X

Y

XY

XY

XY +XY = F

(X+ Y)(X+ Y) = F



Expressions to Schematics

F = XY +XY = (X+ Y)(X+ Y)

X

Y

X

Y

XY

XY

XY +XY = F

(X+ Y)(X+ Y) = F



Minterms and Maxterms: Another Example
The minterm and maxterm representation of functions
may look very different:

X Y Minterm Maxterm F

0 0 XY X+ Y 0
0 1 XY X+ Y 1
1 0 XY X+ Y 1
1 1 XY X+ Y 1

The sum of the minterms where the function is 1:

F = XY +XY +XY

The product of the maxterms where the function is 0:

F = X+ Y



Expressions to Schematics 2

F = XY +XY +XY = X+ Y

X

Y

XY +XY +XY = F

X+ Y = F



The Menagerie of Gates

Buffer

0 0
1 1

Inverter

0 1
1 0

AND

· 0 1
0 0 0
1 0 1

NAND

· 0 1
0 1 1
1 1 0

OR

+ 0 1
0 0 1
1 1 1

NOR

+ 0 1
0 1 0
1 0 0

XOR

⊕ 0 1
0 0 1
1 1 0

XNOR

⊕ 0 1
0 1 0
1 0 1



De Morgan’s Theorem

¬(a∨ b) = (¬a)∧ (¬b) ¬(a∧ b) = (¬a)∨ (¬b)

Proof by Truth Table:

a b a∨ b (¬a)∧ (¬b) a∧ b (¬a)∨ (¬b)

0 0 0 1 0 1
0 1 1 0 0 1
1 0 1 0 0 1
1 1 1 0 1 0



De Morgan’s Theorem in Gates

AB = A+B

=

A+B = A · B

=



Bubble Pushing

A

B

C

D

F

Apply De Morgan’s Theorem:

Transform NAND into OR with inverted inputs

Two bubbles on a wire cancel



Bubble Pushing

A

B

C

D

F

Apply De Morgan’s Theorem:

Transform NAND into OR with inverted inputs

Two bubbles on a wire cancel



Bubble Pushing

A

B

C

D

F

Apply De Morgan’s Theorem:

Transform NAND into OR with inverted inputs

Two bubbles on a wire cancel



PONG

PONG, Atari 1973

Built from TTL logic gates; no computer, no software

Launched the video arcade game revolution



Horizontal Ball Control in PONG

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X
1 0 0 X X
1 0 1 1 0
1 1 0 1 1
1 1 1 X X

The ball moves either left or right.

Part of the control circuit has three
inputs: M (“move”), L (“left”), and R
(“right”).

It produces two outputs A and B.

Here, “X” means “I don’t care what
the output is; I never expect this
input combination to occur.”



Horizontal Ball Control in PONG

M L R A B

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 0
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

E.g., assume all the X’s are 0’s and
use Minterms:

A =MLR+MLR

B =MLR+MLR+MLR

3 inv + 4 AND3 + 1 OR2 + 1 OR3



Horizontal Ball Control in PONG

M L R A B

0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 1
1 0 0 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

Assume all the X’s are 1’s and use
Maxterms:

A = (M+ L+R)(M+ L+R)

B =M+ L+R

3 inv + 3 OR3 + 1 AND2



Horizontal Ball Control in PONG

M L R A B

0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 1 0

Choosing better values for the X’s
and being much more clever:

A =M

B =MR

1 NAND2 (!)



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X
1 0 0 X X
1 0 1 1 0
1 1 0 1 1
1 1 1 X X

The M’s are already
arranged nicely



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X
1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

Let’s rearrange the
L’s by permuting two
pairs of rows



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X
1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

Let’s rearrange the
L’s by permuting two
pairs of rows



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X

1 0 0 X X
1 0 1 1 0 1 1 0 1 1

1 1 1 X X

Let’s rearrange the
L’s by permuting two
pairs of rows



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X

1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

Let’s rearrange the
L’s by permuting two
pairs of rows



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X

1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

Let’s rearrange the
L’s by permuting two
pairs of rows



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X

1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

Let’s rearrange the
L’s by permuting two
pairs of rows



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X

1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

Let’s rearrange the
L’s by permuting two
pairs of rows



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X

1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

Let’s rearrange the
L’s by permuting two
pairs of rows



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1
0 1 0 0 1
0 1 1 X X

1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

The R’s are really
crazy; let’s use the
second dimension



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X
0 0 1 0 1

0 1 0 0 1
0 1 1 X X

1 0 0 X X
1 0 1 1 0

1 1 0 1 1
1 1 1 X X

The R’s are really
crazy; let’s use the
second dimension



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X0 0 1 0 1

0 1 0 0 10 1 1 X X

1 0 0 X X1 0 1 1 0

1 1 0 1 11 1 1 X X

The R’s are really
crazy; let’s use the
second dimension



Karnaugh Maps

Basic trick: put “similar” variable values near each
other so simple functions are obvious

M L R A B

0 0 0 X X0 0 1 0 1

0 1 0 0 10 1 1 X X

1 0 0 X X1 0 1 1 0

1 1 0 1 11 1 1 X X

M

MR



Maurice Karnaugh’s Maps

Transactions of the AIEE, 1953



The Seven-Segment Decoder Example

a

b

c

d

e

f

g
W X Y Z a b c d e f g

0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1
1 0 1 0 X X X X X X X
1 0 1 1 X X X X X X X
1 1 0 0 X X X X X X X
1 1 0 1 X X X X X X X
1 1 1 0 X X X X X X X
1 1 1 1 0 0 0 0 0 0 0



Karnaugh Map for Seg. a

W X Y Z a

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 0

1 0 1 1
0 1 1 1
X X 0 X
1 1 X X

Z

Y

X

W

The Karnaugh Map
Sum-of-Products Challenge

Cover all the 1’s and none of the 0’s
using as few literals (gate inputs) as
possible.

Few, large rectangles are good.

Covering X’s is optional.



Karnaugh Map for Seg. a

W X Y Z a

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 0

1 0 1 1
0 1 1 1
X X 0 X
1 1 X X

Z

Y

X

W

The minterm solution: cover each 1
with a single implicant.

a = WXY Z+WXY Z+WXY Z+

WXY Z+WXY Z+WXY Z+

WXY Z+WXY Z

8× 4 = 32 literals

4 inv + 8 AND4 + 1 OR8



Karnaugh Map for Seg. a

W X Y Z a

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 0

1 0 1 1
0 1 1 1
X X 0 X
1 1 X X

Z

Y

X

W

Merging implicants helps

Recall the distributive law:
AB+AC = A(B+C)

a = WXY Z+WY +

WXZ+WXY

4+ 2+ 3+ 3 = 12 literals

4 inv + 1 AND4 + 2 AND3 + 1 AND2
+ 1 OR4



Karnaugh Map for Seg. a

W X Y Z a

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 0

1 0 1 1
0 1 1 1
X X 0 X
1 1 X X

Z

Y

X

W

Missed one: Remember this is
actually a torus.

a = XY Z+WY +

WXZ+WXY

3+ 2+ 3+ 3 = 11 literals

4 inv + 3 AND3 + 1 AND2 + 1 OR4



Karnaugh Map for Seg. a

W X Y Z a

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 0

1 0 1 1
0 1 1 1
X X 0 X
1 1 X X

Z

Y

X

W

Taking don’t-cares into account, we
can enlarge two implicants:

a = XZ+WY +

WXZ+WX

2+ 2+ 3+ 2 = 9 literals

3 inv + 1 AND3 + 3 AND2 + 1 OR4



Karnaugh Map for Seg. a

W X Y Z a

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 0

1 0 1 1
0 1 1 1
X X 0 X
1 1 X X

Z

Y

X

W

Can also compute the complement
of the function and invert the result.

Covering the 0’s instead of the 1’s:

a = WXY Z+XY Z+WY

4+ 3+ 2 = 9 literals

5 inv + 1 AND4 + 1 AND3 + 1 AND2
+ 1 OR3



Karnaugh Map for Seg. a

W X Y Z a

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 0

1 0 1 1
0 1 1 1
X X 0 X
1 1 X X

Z

Y

X

W

To display the score, PONG used a
TTL chip with this solution in it:

OUTPUT

b

(12)

OUTPUT

a

(13)



Boolean Laws and Karnaugh Maps

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

W

X

Y

Z

WXY Z+WXY Z+
WXY Z+WXY Z+
WXY Z+WXY Z+
WXY Z+WXY Z

Factor out the W’s



Boolean Laws and Karnaugh Maps

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

W

X

Y

Z

(W+W)XY Z+
(W+W)XY Z+
(W+W)XY Z+
(W+W)XY Z

Use the identities

W+W = 1

and

1X = X.



Boolean Laws and Karnaugh Maps

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

W

X

Y

Z

XY Z+
XY Z+
XY Z+
XY Z

Factor out the Y’s



Boolean Laws and Karnaugh Maps

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

W

X

Y

Z

(Y + Y)XZ+
(Y + Y)XZ

Apply the identities again



Boolean Laws and Karnaugh Maps

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

W

X

Y

Z

XZ+
XZ

Factor out Z



Boolean Laws and Karnaugh Maps

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

W

X

Y

Z

X (Z+Z)

Simplify



Boolean Laws and Karnaugh Maps

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

W

X

Y

Z

X

Done


