Fundamentals of Computer Systems Boolean Logic

Stephen A. Edwards

Columbia University
Fall 2011

Boolean Logic

AN INVESTIGATION

or
THE LAWS OF THOUGHT, ON WHICH ARE FOUNDED

THE MATHEMATICAL THEORIES OF LOGIC
AND PROBABILITIES.

BY
GEORGE BOOLE, LL.D.
phormmon of mathenatice in questis collman, conk

LONDON:
WALTON AND MABERLY,
UPPEE GOWER-STREET, ANDIVT-LANE, PATERNOSTER-ROW,
CAMBRIDGE: MACMILLAN AND CO.
1854.

George Boole 1815-1864

Boole's Intuition Behind Boolean Logic

Variables x, y, \ldots represent classes of things
No imprecision: A thing either is or is not in a class

If x is "sheep"
and y is "white things," $x y$ are all white sheep,

$$
x y=y x
$$

and

$$
x x=x
$$

$$
x+y=y+x
$$

and
If x is "men" and
y is "women,"
$x+y$ is "both
men and
women,"

$$
x+x=x
$$

If x is "men," y is "women," and
z is "European,"
$z(x+y)$ is
"European men and women" and
$z(x+y)=z x+z y$.

The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A
An "and" operator \wedge An "or" operator v

A "not" operator \neg
A "false" value $0 \in A$
A "true" value $1 \in A$

The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A
An "and" operator \wedge An "or" operator v

A "not" operator \neg
A "false" value $0 \in A$
A "true" value $1 \in A$

Axioms

$a \vee b=b \vee a$	$a \wedge b=b \wedge a$
$a \vee(b \vee c)=(a \vee b) \vee c$	$a \wedge(b \wedge c)=(a \wedge b) \wedge c$
$a \vee(a \wedge b)=a$	$a \wedge(a \vee b)=a$
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$	$a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
$a \vee \neg a=1$	$a \wedge \neg a=0$

The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of

A set of values A
An "and" operator \wedge
An "or" operator v

A "not" operator \neg
A "false" value $0 \in A$
A "true" value $1 \in A$

Axioms

$a \vee b=b \vee a$	$a \wedge b=b \wedge a$
$a \vee(b \vee c)=(a \vee b) \vee c$	$a \wedge(b \wedge c)=(a \wedge b) \wedge c$
$a \vee(a \wedge b)=a$	$a \wedge(a \vee b)=a$
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$	$a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
$a \vee \neg a=1$	$a \wedge \neg a=0$

We will use the first non-trivial Boolean Algebra: $A=\{0,1\}$. This adds the law of excluded middle: if $a \neq 0$ then $a=1$ and if $a \neq 1$ then $a=0$.

Simplifying a Boolean Expression

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."
$x \vee((\neg x) \wedge y)$

Axioms
$a \vee b=b \vee a$
$a \wedge b=b \wedge a$
$a \vee(b \vee c)=(a \vee b) \vee c$
$a \wedge(b \wedge c)=(a \wedge b) \wedge c$
$a \vee(a \wedge b)=a$
$a \wedge(a \vee b)=a$
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
$a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
$a \vee \neg a=1$
$a \wedge \neg a=0$

Lemma:

$$
\begin{aligned}
x \wedge 1 & =x \wedge(x \vee \neg x) \\
& =x \wedge(x \vee y) \text { if } y=\neg x \\
& =x
\end{aligned}
$$

Simplifying a Boolean Expression

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."

$$
\begin{aligned}
x & \vee((\neg x) \wedge y) \\
& =(x \vee(\neg x)) \wedge(x \vee y)
\end{aligned}
$$

Axioms
$a \vee b=b \vee a$
$a \wedge b=b \wedge a$
$a \vee(b \vee c)=(a \vee b) \vee c$
$a \wedge(b \wedge c)=(a \wedge b) \wedge c$
$a \vee(a \wedge b)=a$
$a \wedge(a \vee b)=a$
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
$a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
$a \vee \neg a=1$
$a \wedge \neg a=0$

Lemma:

$$
\begin{aligned}
x \wedge 1 & =x \wedge(x \vee \neg x) \\
& =x \wedge(x \vee y) \text { if } y=\neg x \\
& =x
\end{aligned}
$$

Simplifying a Boolean Expression

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."

$$
\begin{aligned}
x & \vee((\neg x) \wedge y) \\
& =(x \vee(\neg x)) \wedge(x \vee y) \\
& =1 \wedge(x \vee y)
\end{aligned}
$$

Axioms
$a \vee b=b \vee a$
$a \wedge b=b \wedge a$
$a \vee(b \vee c)=(a \vee b) \vee c$
$a \wedge(b \wedge c)=(a \wedge b) \wedge c$
$a \vee(a \wedge b)=a$
$a \wedge(a \vee b)=a$
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
$a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
$a \vee \neg a=1$
$a \wedge \neg a=0$

Lemma:

$$
\begin{aligned}
x \wedge 1 & =x \wedge(x \vee \neg x) \\
& =x \wedge(x \vee y) \text { if } y=\neg x \\
& =x
\end{aligned}
$$

Simplifying a Boolean Expression

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."

$$
\begin{aligned}
x & \vee((\neg x) \wedge y) \\
& =(x \vee(\neg x)) \wedge(x \vee y) \\
& =1 \wedge(x \vee y) \\
& =x \vee y
\end{aligned}
$$

Axioms
$a \vee b=b \vee a$
$a \wedge b=b \wedge a$
$a \vee(b \vee c)=(a \vee b) \vee c$
$a \wedge(b \wedge c)=(a \wedge b) \wedge c$
$a \vee(a \wedge b)=a$
$a \wedge(a \vee b)=a$
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
$a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
$a \vee \neg a=1$
$a \wedge \neg a=0$

Lemma:

$$
\begin{aligned}
x \wedge 1 & =x \wedge(x \vee \neg x) \\
& =x \wedge(x \vee y) \text { if } y=\neg x \\
& =x
\end{aligned}
$$

What Does This Have To Do With Logic Circuits?

A SYZBOLIC ANALYSIS
of
RELAY AND SVITCHING OIROUITS
by
Clauce Elwood Shannon
B.S., University of Mionizan

1950

Submittec in Partial Fulfillment of the
Reculrements for the Degree of
LASTER OF SCIENCE
from the
Massacnusetts Institute of Technology
1940

Signzture or Autinor \qquad
Depsrtment of Electrical Engineering, August 10, 1937

Claude Shannon 1916-2001

Signature of Professor
in Crarye of Research

Signature of Cnairman of Departinent
comeittee on Graduate Students \qquad

Shannon's MS Thesis

"We shall limit our treatment to circuits containing only relay contacts and switches, and therefore at any given time the circuit between any two terminals must be either open (infinite impedance) or closed (zero impedance).

Shannon's MS Thesis

FIg. 1

Fig. 2

Fig. 3
"It is evident that with the above definitions the following postulates hold.
$0 \cdot 0=0 \quad$ A closed circuit in parallel with a closed circuit is a closed circuit.
$1+1=1 \quad$ An open circuit in series with an open circuit is an open circuit.
$1+0=0+1=1 \quad$ An open circuit in series with a closed circuit in either order is an open circuit.
$0 \cdot 1=1 \cdot 0=0 \quad$ A closed circuit in parallel with an open circuit in either order is an closed circuit.
$0+0=0 \quad$ A closed circuit in series with a closed circuit is a closed circuit.
$1 \cdot 1=1 \quad$ An open circuit in parallel with an open circuit is an open circuit.
At any give time either $X=0$ or $X=1$

Alternate Notations for Boolean Logic

Operator Math Engineer Schematic

Copy $x \quad x \quad x-$ or $x-1$

Complement
$\neg X$
\bar{X}
$x-D o-\bar{x}$

AND
$x \wedge y \quad X Y$ or $X \cdot Y$

OR

$$
x \vee y \quad X+Y
$$

Definitions

Literal: a Boolean variable or its complement
E.g., $X \quad \bar{X} \quad \bar{X} \quad \bar{Y}$

Implicant: A product of literals
E.g., $X \quad X Y \quad X \bar{Y} Z$

Minterm: An implicant with each variable once
E.g., $X \bar{Y} Z \quad X Y Z \quad \bar{X} \bar{Y} Z$

Maxterm: A sum of literals with each variable once
E.g., $X+\bar{Y}+Z \quad X+Y+Z \quad \bar{X}+\bar{Y}+Z$

Be Careful with Bars

$$
\bar{X} \bar{Y} \neq \overline{X Y}
$$

Let's check all the combinations of X and Y :

X	Y		\bar{X}	\bar{Y}	$\bar{X} \cdot \bar{Y}$	$X Y$
$\overline{X Y}$						
0	0	1	1	1	0	1
0	1		1	0	0	0
1	0	0	1	0	0	1
1	1	0	0	0	1	0

Truth Tables

A truth table is a canonical representation of a Boolean function

X	Y	Minterm	Maxterm	\bar{X}	$X Y$	$\overline{X Y}$	$X+Y$	$\overline{X+Y}$
0	0	$\bar{X} \bar{Y}$	$X+Y$	1	0	1	0	1
0	1	$\bar{X} Y$	$X+\bar{Y}$	1	0	1	1	0
1	0	$X \bar{Y}$	$\bar{X}+Y$	0	0	1	1	0
1	1	$X Y$	$\bar{X}+\bar{Y}$	0	1	0	1	0

Each row has a unique minterm and maxterm
The $\begin{aligned} & \text { minterm is } 1 \\ & \text { maxterm is } 0\end{aligned}$ for only its row

Sum-of-minterms and Product-of-maxterms

Two mechanical ways to translate a function's truth table into an expression:

X	Y	Minterm	Maxterm	F
0	0	$\bar{X} \bar{Y}$	$X+Y$	0
0	1	$\bar{X} Y$	$X+\bar{Y}$	1
1	0	$X \bar{Y}$	$\bar{X}+Y$	1
1	1	$X Y$	$\bar{X}+\bar{Y}$	0

The sum of the minterms where the function is 1 :

$$
F=\bar{X} Y+X \bar{Y}
$$

The product of the maxterms where the function is 0 :

$$
F=(X+Y)(\bar{X}+\bar{Y})
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}=(X+Y)(\bar{X}+\bar{Y})
$$

Minterms and Maxterms: Another Example

The minterm and maxterm representation of functions may look very different:

X	Y	Minterm	Maxterm	F
0	0	$\bar{X} \bar{Y}$	$X+Y$	0
0	1	$\bar{X} Y$	$X+\bar{Y}$	1
1	0	$X \bar{Y}$	$\bar{X}+Y$	1
1	1	$X Y$	$\bar{X}+\bar{Y}$	1

The sum of the minterms where the function is 1 :

$$
F=\bar{X} Y+X \bar{Y}+X Y
$$

The product of the maxterms where the function is 0 :

$$
F=X+Y
$$

Expressions to Schematics 2

$$
F=\bar{X} Y+X \bar{Y}+X Y=X+Y
$$

The Menagerie of Gates

De Morgan's Theorem

$\neg(a \vee b)=(\neg a) \wedge(\neg b) \quad \neg(a \wedge b)=(\neg a) \vee(\neg b)$

Proof by Truth Table:

a	b	$a \vee b$	$(\neg a) \wedge(\neg b)$	$a \wedge b$	$(\neg a) \vee(\neg b)$
0	0	0	1	0	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	0	1	0

De Morgan's Theorem in Gates

$$
\overline{A B}=\bar{A}+\bar{B}
$$

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

Bubble Pushing

Apply De Morgan's Theorem:
Transform NAND into OR with inverted inputs

Bubble Pushing

Apply De Morgan's Theorem:
Transform NAND into OR with inverted inputs
Two bubbles on a wire cancel

Bubble Pushing

Apply De Morgan's Theorem:
Transform NAND into OR with inverted inputs
Two bubbles on a wire cancel

PONG

PONG, Atari 1973
Built from TTL logic gates; no computer, no software
Launched the video arcade game revolution

Horizontal Ball Control in PONG

M	L	R	A	B
0	0	0	X	X
0	0	1	0	1
0	1	0	0	1
0	1	1	X	X
1	0	0	X	X
1	0	1	1	0
1	1	0	1	1
1	1	1	X	X

The ball moves either left or right.
Part of the control circuit has three inputs: M ("move"), L ("left"), and R ("right").

It produces two outputs A and B.
Here, "X" means "I don't care what the output is; I never expect this input combination to occur."

Horizontal Ball Control in PONG

M	L	R	A	B	E.g., assume all the X's are 0's and use Minterms:
0	0	0	0	0	
0	0	1	0	1	$A=M \bar{L} R+M L \bar{R}$
0	1	0	0	1	
0	1	1	0	0	$B=\bar{M} L R+\bar{M} L \bar{R}+M L \bar{R}$
1	0	0	0	0	$3 \mathrm{inv}+4$ AND3 + 1 OR2 + 1 OR3
1	0	1	1	0	
1	1	0	1	1	
1	1	1	0	0	

Horizontal Ball Control in PONG

M	L	R	A	B		Assume all the X's are 1's 0
0	0	1	1		Maxterms:	
0	0	1	0	1		$A=(M+L+\bar{R})(M+\bar{L}+R)$
0	1	0	0	1		$B=\bar{M}+L+\bar{R}$
0	1	1	1	1		
1	0	0	1	1	3 inv +3 OR3 +1 AND2	
1	0	1	1	0		
1	1	0	1	1		
1	1	1	1	1		

Horizontal Ball Control in PONG

M	L	R	A	B
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	1	0

Choosing better values for the X's and being much more clever:
$A=M$
$B=\overline{M R}$
1 NAND2 (!)

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B
0	0	0	X	X
0	0	1	0	1
0	1	0	0	1
0	1	1	X	X
1	0	0	X	X
1	0	1	1	0
1	1	0	1	1
1	1	1	X	X

The M's are already arranged nicely

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	Let's rearrange the	
0	0	0	X	X		
0	0	1	0	1	L's by permuting twopairs of rows	
0	1	0	0	1		
0	1	1	X	X		
1	0	0	X	X		
1	0	1	1	0		
			11	0	1	1
			11	1	X	X

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B				
0	0	0	X	X		Let's rearrange the		
0	0	1	0	1		L's by permuting two		
0	1	0	0	1		pairs of rows		
0	1	1	X	X				
1	0	0	X	X				
1	0	1	1	0				
					1	1	0	1
		1	1	X	X			

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	Let's rearrange the		
0	0	0	X	X			
0	0	1	0	1	L's by		ing two
0	1	0	0	1	pairs of rows		
0	1	1	X	X			
1	0	0	X	$\times 1$	10	1	1
1	0	1	1	0^{1}	11	X	X

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	Let's rearrange the		
0	0	0	X	X			
0	0	1	0	1	L's by permuting two		
0	1	0	0	1	pairs of rows		
0	1	1	X	X			
				1	10	1	1
				1	11	X	X
1	0	0	X	X			
1	0	1	1	0			

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	Let's rearrange the
0	0	0	X	X	
0	0	1	0	1	L's by permuting two
0	1	0	0	1	
0	1	1	X	X	
			1	1	11
			1	1	X X
1	0	0	X	X	
1	0	1	1	0	

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	
0	0	0	X	X	Let's rearrange the
0	0	1	0	1	
0	1	0	0	1	L's by permuting two
0	1	1	X	X	
1	1	0	1	1	
1	1	1	X	X	
1	0	0	X	X	
1	0	1	1	0	

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	The R's are really crazy; let's use the second dimension
0	0	0	X	X	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	X	X	
1	1	0	1	1	
1	1	1	X	X	
1	0	0	X	X	
1	0	1	1	0	

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B
000001	$X 0$	$X 1$		The R's are really crazy; let's use the
001101	$0 X$	1 X	second dimension	
111101	1 X	1 X		
110001	X 1	$\mathrm{X0}$		

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B
00	00	01	X 0	X 1

Maurice Karnaugh’s Maps

The Map Method for Synthesis of
 Combinational Logic Circuits

M. KARNAUGH
nonmember alee

THE SEARCH for simple abstract techniques to be applied to the design of switching systems is still, despite some recent advances, in its early stages. The problem in this area which has been attacked most energetically is that of the synthesis of efficient combinational that is, nonsequential, logic circuits.
be convenient to describe other methods in terms of Boolean algebra. Whencver the term "algebra" is used in this paper, it will refer to Boolean algebra, where addition corresponds to the logical connective "or," while multiplication corresponds to "and."
The minimizing chart, ${ }^{2}$ developed at

(A)

(B)

Fig. 2. Graphical representations of the input conditions for three and for four
variables

The Seven-Segment Decoder Example

Karnaugh Map for Seg. a
$1 \overbrace{011}^{Z}$
Sum-of-Products Challenge

W	X	Y	Z	a
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	0

The Karnaugh Map

Cover all the 1 's and none of the 0's using as few literals (gate inputs) as possible.

Few, large rectangles are good.
Covering X 's is optional.

Karnaugh Map for Seg. a

The minterm solution: cover each 1 with a single implicant.

$$
\begin{aligned}
a= & \bar{W} \bar{X} \bar{Y} \bar{Z}+\bar{W} \bar{X} Y Z+\bar{W} \bar{X} Y \bar{Z}+ \\
& \bar{W} X \bar{Y} Z+\bar{W} X Y Z+\bar{W} X Y \bar{Z}+ \\
& W \bar{X} \bar{Y} Z+W \bar{X} \bar{Y} Z
\end{aligned}
$$

$8 \times 4=32$ literals
4 inv + 8 AND4 + 1 OR8

Karnaugh Map for Seg. a

$$
\left.\begin{array}{c}
x\left\{\begin{array}{c}
\left\{\begin{array}{llll}
(1) & \overbrace{0} & 1 & 1 \\
0 & 1 & 1 & 1 \\
X & X & 0 & X \\
1 & 1
\end{array}\right) \\
\underbrace{}_{Y} \\
Z
\end{array}\right\}
\end{array}\right\}
$$

Merging implicants helps

W	X	Y	Z	a
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	0

Recall the distributive law:
$A B+A C=A(B+C)$

$$
\begin{aligned}
a= & \bar{W} \bar{X} \bar{Y} \bar{Z}+\bar{W} Y+ \\
& \bar{W} X Z+W \bar{X} \bar{Y}
\end{aligned}
$$

$4+2+3+3=12$ literals
4 inv + 1 AND4 + 2 AND3 + 1 AND2
+1 OR4

Karnaugh Map for Seg. a

$$
\left.\begin{array}{c}
\begin{array}{|c|cc|}
\hline 1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array} \\
X \\
X
\end{array}\right]
$$

Missed one: Remember this is actually a torus.

$$
a=\frac{\bar{X} \bar{Y} \bar{Z}+\bar{W} Y+}{\bar{W} X Z+W \bar{X} \bar{Y}}
$$

$3+2+3+3=11$ literals
4 inv + 3 AND3 + 1 AND2 + 1 OR4

Karnaugh Map for Seg. a

W	X	Y	Z	a
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	0

Taking don't-cares into account, we can enlarge two implicants:

$$
a=\frac{\bar{X} \bar{Z}+\bar{W} Y+}{\bar{W} X Z+W \bar{X}}
$$

$2+2+3+2=9$ literals
3 inv + 1 AND3 + 3 AND2 + 1 OR4

Karnaugh Map for Seg. a

Can also compute the complement of the function and invert the result.

Covering the 0's instead of the 1's:

$$
\bar{a}=\bar{W} \bar{X} \bar{Y} Z+X \bar{Y} \bar{Z}+W Y
$$

$4+3+2=9$ literals
5 inv + 1 AND4 + 1 AND3 + 1 AND2 +1 OR3

Karnaugh Map for Seg. a

$$
x\left\{\begin{array}{cc}
1 & \overbrace{0}^{0} \\
\left\{\begin{array}{lll}
0 & 1 & 1 \\
x & 1 & 1 \\
x & 0 & x \\
1 & 1 & \underbrace{X}_{Y} \\
\hline
\end{array}\right. \\
Z
\end{array}\right\} W
$$

To display the score, PONG used a TTL chip with this solution in it:

Boolean Laws and Karnaugh Maps

$$
\begin{aligned}
& W X \bar{Y} \bar{Z}+\bar{W} X \bar{Y} \bar{Z}+ \\
& W X Y \bar{Z}+\bar{W} X Y \bar{Z}+ \\
& W X Y Z+\bar{W} X Y Z+ \\
& W X \bar{Y} Z+\bar{W} X \bar{Y} Z
\end{aligned}
$$

Factor out the W's

Boolean Laws and Karnaugh Maps

$$
\begin{aligned}
& (W+\bar{W}) \times \bar{Y} \bar{Z}_{+} \\
& (W+\bar{W}) \times Y \bar{Z}+ \\
& (W+\bar{W}) \times Y Z+ \\
& (W+\bar{W}) \times \bar{Y} Z
\end{aligned}
$$

Use the identities

$$
w+\bar{W}=1
$$

and

$$
1 X=X
$$

Boolean Laws and Karnaugh Maps

$$
\begin{aligned}
& X \bar{Y} \bar{Z}+ \\
& X Y \bar{Z}+ \\
& X Y Z+ \\
& X \bar{Y} Z
\end{aligned}
$$

Factor out the Y 's

Boolean Laws and Karnaugh Maps

$$
\begin{aligned}
& (\bar{Y}+Y) X \bar{Z}+ \\
& (\bar{Y}+Y) X Z
\end{aligned}
$$

Apply the identities again

Boolean Laws and Karnaugh Maps

$$
\begin{aligned}
& x \bar{z}_{+} \\
& x z
\end{aligned}
$$

Factor out Z

Boolean Laws and Karnaugh Maps

$$
x(\bar{Z}+Z)
$$

Simplify

Boolean Laws and Karnaugh Maps

x
Done

