
COMS W4115 Project Proposal
CSSLang

Wayne Yang
wy2149@columbia.edu

June 6, 2010

1 Introduction

In the past few years, there has been a growing trend of building web sites
that comply with web standards to ensure greater accessibility, usability,
and interoperability of web pages. These web standards commonly refer to
Hypertex Markup Language (HTML), Cascading Style Sheets (CSS), and
ECMAScript (or Javascript). CSS is a style sheet language primarily used
to describe the presentations of web pages [1]. It enables the separation of
presentation from the semantic or structure of web pages and allows web
designers to reuse style sheets across web pages [2].

Throughout this document, the term ”CSS” refers to the the CSS Level
2 Revision 1 (CSS 2.1) specification by W3C. Although CSS can also be ap-
plied to XML documents, this project focuses on CSS in the HTML context.

This project is to design a language CSSLang that adds features typically
seen in programming languages to CSS.

2 Motivations

Currently, CSS has no notion of variables which makes it diffcult for users
to reuse style properties or create CSS rule sets that have parameterized
property values. For example, to specify similar border and margin style for
two class selectors header and footer, one has to duplicate style properties
with slight variations in values:

1

#header {

border-width: 1px;

margin-width: 1px;

}

#footer {

border-width: 5px;

margin-width: 5px;

}

In addition, CSS lacks support for expressions in the property value such as
the following:

#header {

border-width: 5px + 3em;

}

Inpsired by LESS and Sass which attempts to address these shortcomings
of CSS, CSSLang implements some of the features and syntax of these lan-
guages.

3 CSSLang

A CSSLang source file is compiled into a valid CSS style sheet with file
extension .css.

3.1 Rule sets

CSSLang will implement the syntax of a simplified CSS rule set which consists
of a selector followed by a declaration block. A declaration block consists of
one of more pairs of style property and its value separated by a colon. Each
pair of property and value is terminated by a semicolon. An example of a
CSS rule set in CSSLang looks like the following:

selector {

property1: value1;

property2: value2;

...

}

CSS selectors are pattern matching rules that determine which style rules
apply to elements in a web page [1]. In CSSLangl, only ID and class selectors

2

will be implemented. An ID selector starts with a ’#’ followed by the ID
name. So #content is a selector that match HTML element with ID attribute
equal to content. On the other hand, class selectors are defined with a prefix
’.’. An example of a class selector .footer will match HTML elements with
class attribute equal to footer.

3.2 Variables

Variables in CSSLang are declared in the following syntax:

$variable-name: variable-value

where variable-value can be any valid CSS property value. A variable can be
used inside a rule set as follows:

$length: 1px;

#header {

border-width: $length;

}

The values of variables persist after the variable declarations until the end
of the file. CSSLang supports the following type of values for the variables:

• numbers: 1, 2px, and -3

• strings: unquoted strings

• color: #FF0000

3.3 Operators

The basic arithmetic operators are supported in CSSLang: +, -, *, and /
which are addition, substraction, multiplications, and divisions respectively.
Operators can be used in expressions in the property values of a rule set.

3.4 Control structures

As in the Sass language, CSSLang will support @if directive for conditional
declaration of style properties. This directive is used inside a declaration of
style properties. A basic usage is as follows:

3

$font-style : italic;

div {

font-style: $font-style;

@if font-style = normal {

font-size: 5px;

} @else if $font-style == italic {

font-size: 10px;

} @else {

font-size: 15px;

}

}

This is compiled to:

div {

font-style: italic;

font-size: 10px;

}

3.5 Rule templates

Rule templates (or just templates) are rule sets that can be re-used through-
out a CSSLang source file. They can be customized by taking parameters.
For example, a template can be declared as

@def foo-header($color, $align) {

text-align: $align;

color: $color;

}

To use template foo-header, use the @include directive. For example:

h1 {

@include foo-header(#ffffff, center);

}

is compiled to:

h1 {

text-align: center;

color: #ffffff;

}

4

4 Examples

4.1 First example

As mentioned in the earlier in this document, rule sets such as

#header {

border-width: 1px;

margin-width: 1px;

}

#footer {

border-width: 5px;

margin-width: 5px;

}

can be rewritten in CSSLang as

@def space-before-content ($width) {

border-width: $width;

margin-width: $width;

}

#header {

@include space-before-content(1px);

}

#footer {

@include space-before-content(5px);

}

5 Second example

@def div-style ($type, $width) {

@if $type = header {

color: red;

border-width: $width + 10px;

} @else if $type = body {

color: blue;

border-width: $width + 5px;

} @else {

color: green;

border-width: $width;

}

5

}

div.header {

float: right;

@include div-style(header, 1px);

}

div.footer {

height: 5px;

clear: both;

@include div-style(footer, 1px);

}

is compiled to:

div.header {

float: right;

color: red;

border-width: 11px;

}

div.footer {

height: 5px;

clear: both;

color: green;

border-width: 1px;

}

References

[1] Cascading Style Sheets Level 2 Revision 1 Specification,
http://www.w3.org/TR/CSS2/

[2] Cascading Style Sheets, http://en.wikipedia.org/wiki/CSS

[3] LESS documentation, http://lesscss.org/docs

[4] Sass Language Reference, http://sass-
lang.com/docs/yardoc/file.SASS REFERENCE.html

6

