
STePL (Simple Text Processing Language)

Nandan Naik (nan2118)

1. Introduction

STePL is a simple language for text processing that allows retrieval of text from files, regular expression

matching with support for multiple match regions and persistence of processed text to files. STePL is

inspired from AWK. It is offers a subset of the capabilities offered by AWK via a syntax that is similar to

the Ruby Language.

2. Token Types and Interpretation

The following types of tokens can be present in a STePL program:

- Identifiers

- Constants (Integer and String)

- Expression Operators

- Keywords

Tokens are interpreted in a “greedy” manner. That is, a valid token is the longest string of characters in

the input stream that could be grouped to form the token.

3. Whitespace

In general spaces, tabs and newlines are ignored. A space must be used to separate adjacent Identifiers

and Constants.

4. Comments

Comments are indicated by a string of characters that follow a “#” character. Comments cannot be

nested. Any characters found in a line after the initial “#” character will be ignored. A comment must

occupy a line by itself and cannot be preceded by any tokens.

5. Expressions

An expression is defined to be of one of the following forms:

- L-Value

- L-Value Operator L-Value

- L-Value Operator StringConstant

- L-Value Operator IntegerConstant

- Expression and Expression

- Expression or Expression

The terms L-Value, Operator, StringConstant and IntegerConstant are defined below.

The last two rules above apply to the following cases:

- Where multiple expressions are combined with an “and” indicating that all of the

constituent expressions must yield a value of 0 for the final result to yield a 0.

- Where multiple expressions are combined with an “or”, indicating that any one of the

constituent expressions must yield a value of 0 for the final result to yield a 0.

6. Identifiers

Identifiers can consist of alphabets only. They can consist of any alphabet in the ASCII character set.

Identifiers are case sensitive. Therefore an identifier called “MyVariable” is different from one called

“myVariable”. The length of a valid Identifier must be greater than or equal to one.

7. Object Types, Objects and L-Values

There are four types of objects in STePL:

- Integers

- Integer Arrays

- Strings

- String Arrays

An Object is a location in memory capable of storing values. It can be of one of the four types listed

above. An Identifier is used to denote the name of the object. Objects cannot be initialized at definition.

All integer objects and individual elements of integer arrays are set to 0 by default. All string objects and

individual elements of string arrays are set to the empty string “” by default.

Elements of the String and Integer Arrays are accessed via an index starting at 0 until (ArraySize – 1).

L-Values in STePL refer to one of two cases:

- For Integer and String Objects, they are the same as the Identifiers that are used to name

the objects.

- For Integer and String Array Objects, they are the Identifier used to name the Array plus an

index which is an integer constant provided in square brackets.

Ex. MyIntegerArray[5]

Ex. MyStringArray[5]

Object can only be defined outside of functions (objects have global scope). They can, however, only be

assigned inside functions.

8. String Constants

String constants must consist of characters in the ASCII character set. They must be delimited by double-

quotes. Ex. “12345”.

A double-quote at the start of a String constant immediately followed by a double quote to end it

signifies an empty string (“”).

Any double-quote characters that are part of a string constant must be escaped using a preceding

double-quote.

Ex. “The actor said, “”Hello””.” Here the word Hello is prefixed and suffixed by two double quotes.

The following escape sequences are used to denote whitespace: “\n” for newline, “\t” for a tab, “\r” for

a carriage return.

STePL does not have the need for a “NULL” value and is thus not supported in the language.

9. Integer Constants

Integer constants can only consist of the following characters: 0,1,2,3,4,5,6,7,8,9. Negative numbers are

not supported in STePL. Only decimal integers are supported.

STePL does not have the need for a “NULL” value and is thus not supported in the language.

10. Keywords

Keywords are case sensitive. The following keywords are available in STePL:

Keyword Description

appendFile Appends the specified string to the end of the file pointed to by FilePath. Returns 0
on success and a 1 on failure.

Usage: intReturnValue = appendFile FilePath AppendString

Conditions:
FilePath must be a string constant or a string l-value.
AppendString must be a string constant or a string l-value.
intReturnValue must be an integer l-value.

callFunction Makes the flow of control jump to the function name specified by FunctionName.
The flow of control returns to the line after “callFunction” when the function
returns.

Usage: callFunction FunctionName

Conditions:
FunctionName must be an identifier.
The function specified by FunctionName must be defined before being called.

else Used in an if-then-else code block. If the condition for the if statement evaluates to
a non-zero value, the statements associated with else are executed.

Usage:
if SomeInt == 1 then
 # Some STePL Statement(s)
else
 # Some STePL Statement(s)
endIf

endFunction

Used to denote the end of a function.

Usage:
function FunctionName
 # Some STePL Statement(s)
endFunction

Conditions: FunctionName must be an identifier.

endIf

Used in an if-then or an if-then-else code block to denote the end of the block.

Usage:
if SomeInt == 1 then
 # Some STePL Statement(s)
else
 # Some STePL Statement(s)
endIf

endWhile Used to denote the end of a while-endWhile block.

Usage:
while counter < 0 then
 # Some STePL Statement(s)
endWhile

function

Used to denote the beginning of a named code block. Control can be transferred to
this named block of code through callFunction. Functions in STePL do not take any
parameters and do not have a return value. All variables have global scope and can
thus be accessed inside functions.

Usage:
function FunctionName
 # Some STePL Statement(s)
endFunction

Conditions: FunctionName must be an identifier.

getLine

Returns a line of text from the file pointed to by the FilePath at the line number
specified by LineNumber. Returns an empty string if there is not content available
at the specified LineNumber or if the content cannot be read for any other reason
(such as the file not being present).

Usage: StringVariable = getLine FilePath LineNumber

Conditions:
FilePath must be a string constant or a string l-value.
LineNumber must be an integer or an integer l-value.
StringVariable must be a string l-value.

int

Used to indicate that an object can store an integer.

Usage: int MyInteger

Conditions:
MyInteger must be an identifier.
Objects cannot be assigned when they are declared.
They can only be assigned inside functions.

By default all integer objects are set to 0.

intArray Used to indicate that an object can store an array of integers.

Usage: intArray MyIntArray ArraySize

Conditions:
MyIntArray must be an identifier.
ArraySize must be an integer constant.

Usage: MyIntArray [index] = 12345

Conditions:
index must be an integer constant.
Objects cannot be assigned when they are declared.
They can only be assigned inside functions.
By default all elements of integer array objects are set to 0.

if

Used to denote the start of an if-then-else code block. Must be followed by an
expression that yields an integer value.

Usage:
if SomeInt == 1 then
 # Some STePL Statement(s)
else
 # Some STePL Statement(s)
endIf

main Used to denote the block of code at which the flow of control is started in a STePL
program.

Usage:
function main
 # Some STePL Statement(s)
endFunction

Conditions: The main function must always be present in a STePL program.

regexMatch

Returns a stringArray which matches the regular expressions in MatchRegExArray.
The returned stringArray must have the same size as the MatchRegExArray.
An element in the MatchRegExArray corresponds to an element at the same index
in the returned stringArray, if a match was found. If no match was found, the
element in the returned stringArray is an empty string “”.

Usage: MyStringArray = regexMatch Content MatchRegExArray

Conditions:

Content must be an l-value or an string constant.
MatchRegExArray must be an identifier.
MyStringArray must be an indentifier.

regexReplace

Returns a string after replacing any occurrence of the regular expressions in
MatchRegExArray with corresponding strings in the ReplaceStringArray. The
MatchRegExArray must have the same size as the ReplaceStringArray.
For every element in the MatchRegExArray, an element at the same index in
theReplaceStringArray is used as the text for replacement, if a match was found. If
no match was found, the element in the ReplaceStringArray is ignored.

Usage:
MyString = regexReplace Content MatchRegExArray ReplaceStringArray

Conditions:
Content must be an l-value or an string constant.
MatchRegExArray must be an identifier.
ReplaceStringArray must be an indentifier.
MyString must be an identifier.

string

Used to indicate that an object can store a string.

Usage: string MyString

Conditions:
MyString must be an identifier.
Objects cannot be assigned when they are declared.
They can only be assigned inside functions.
By default all elements of string objects are set to “”.

stringArray

Used to indicate an object that can store an array of strings.

Usage: stringArray MyStringArray ArraySize

Conditions:
MyStringArray must be an identifier.
ArraySize must be an integer constant.

Usage: MyStringArray *index+ = “Value”

Conditions:
index must be an integer constant.
Objects cannot be assigned when they are declared.
They can only be assigned inside functions.
By default all elements of string array objects are set to “”.

strReplace

Returns a string after replacing any occurrence of the strings in MatchStringArray
with corresponding strings in the ReplaceStringArray. The MatchStringArray must

have the same size as the ReplaceStringArray.
For every element in the MatchStringArray , an element at the same index in
theReplaceStringArray is used as the text for replacement, if a match was found. If
no match was found, the element in the ReplaceStringArray is ignored.

Usage:
MyString = strReplace Content MatchStringArray ReplaceStringArray

Conditions:
Content must be an l-value or an string constant.
MatchStringArray must be an identifier.
ReplaceStringArray must be an indentifier.
MyString must be an identifier.

while

Used to denote the start of a while-then-endWhile block. Must be followed by an
expression that yields an integer value.

Usage:
while counter < 0 then
 # Some STePL Statement(s)
endWhile

then

Used to denote the end of the condition section of a an if-then, if-then-else or a
while-then code block. Denotes the start of the section of the if or while block
which runsif the condition evaluates to a zero value.

Usage:
while counter < 0 then
 # Some STePL Statement(s)
endWhile

11. Operators

All operators in STePL associate from left to right.

Additive Operators

Operator Usage Description

+

Expression1 + Expression2 Adds two expressions that both yield integer values.
Yields an integer value.

- Expression1 – Expression2 Subtracts Expression 2 from Expression1 where both
expressions yield integer values.
Yields an integer value.

& Expression1 & Expression2 Concatenates two expressions that both yield string values.
Yields a string value.

Unary Operators
There are no unary operators in STePL. STePL does not explicitly allow the initialization of an integer

object to a negative number.

Other Operators

Operator Usage Description

[
and
]

[integerConstant] Indicates which element in an Array we are operating on.

Relational Operators

Operator Usage Description

==

Expression1 == Expression2 Checks if two expressions that both yield integer values are
equal. Yields 0 when they are equal and 1 when they are
not.

!= Expression1 != Expression2 Checks if two expressions that both yield integer values are
not equal. Yields 0 when they are not equal and 1 when
they are.

eq Expression1 eq Expression2 Checks if two expressions that both yield string values are
equal. Yields 0 when they are equal and 1 when they are
not.

neq Expression1 eq Expression2 Checks if two expressions that both yield string values are
not equal. Yields 0 when they are not equal and 1 when
they are.

< Expression1 < Expression2 Yields 0 when Expression1 is less than Expression2 and 1
when it is not so. Both Expression1 and Expression2 must
yield integer values.

<= Expression1 <= Expression2 Yields 0 when Expression1 is less than or equal to
Expression2 and 1 when it is not so. Both Expression1 and
Expression2 must yield integer values.

> Expression1 > Expression2 Yields 0 when Expression1 is greater than Expression2 and
1 when it is not so. Both Expression1 and Expression2 must
yield integer values.

>= Expression1 >= Expression2 Yields 0 when Expression1 is greater than or equal to
Expression2 and 1 when it is not so. Both Expression1 and
Expression2 must yield integer values.

and Expression1 and Expression2 Yields 0 when both Expression1 and Expression2 are equal
to 0. Both Expression1 and Expression2 must yield integer
values.

or Expression1 or Expression2 Yields 0 when either Expression1 or Expression2 is equal to
0. Both Expression1 and Expression2 must yield integer
values.

Assignment Operators

Operator Usage Description

=

L-Value = Expression Assigns the value of Expression to L-Value. The final value of
Expression must match the Object Type of the L-Value.

Conditions: An assignment to an L-Value can only occur
inside of functions. Variables cannot be simultaneously
declared and assigned.

Multiplicative Operators
There are no multiplicative operators in STePL.

12. Storage Classes and Scope

All variables in STePL belong to the global storage class. This entails that they are initiliazed when a

STePL program is started and accessible across every function in the program.

There is no support for STePL programs to be split into multiple files. Thus, any variables in a STePL

program are by default available in any function in that program.

13. Example STePL Program

Many Html Pages have a meta tag in the head section to communicate to search engines what

keywords are most relevant to the contents of the page. These keywords can be useful to categorize an

HTML page, or categorize a web-site in general (based on the most frequent keywords in all its HTML

pages). This program written in STePL fetches an HTML page from disk, reads the keywords in the meta

tag for the page, and writes it to a file on disk.

All variables are global and must be declared outside functions.

string HtmlFile

string OutputFile

string HtmlLine

string MetaKeywords

stringArray MatchReqExStringArray 1

stringArray StringArray 1

stringArray MatchStringArray 1

stringArray ReplaceStringArray 1

int counter

This is a user defined function to get the keywords from a meta tag in the head section.

All functions must be defined before their use. Functions do not have any input or output parameters

since all variables have global scope.

function getMetaKeywords

MatchReqExStringArray[0] = “<meta name=””keywords”” content=””*.+*”” />”

 StringArray = regexMatch HtmlLine MatchReqExStringArray

 MatchReqExStringArray[0] = “content=””*a-zA-Z,0-9+*”””

StringArray = regexMatch StringArray[0] MatchReqExStringArray

MatchStringArray[0] = “content=”””

 ReplaceStringArray*0+ = “”

 StringArray = strReplace StringArray[0] MatchStringArray ReplaceStringArray

MatchStringArray*0+ = “”””

 MetaKeywords = strReplace StringArray[0] MatchStringArray ReplaceStringArray

endFunction

The main function must always be present. It is the entry point for a STePL program.

function main

 HtmlFile = “c:\HtmlFile.html”

 OutputFile = “c:\keywords.txt”

 counter = 1

HtmlLine = getLine HtmlFile counter

 while HtmlLine neq “” then

 callFunction getMetaKeywords

 appendFile OutputFile MetaKeywords

 counter = counter + 1

 HtmlLine = getLine HtmlFile counter

 endWhile

endFunction

