
COMS W4115
Programming Languages and Translators

Homework Assignment 1

Prof. Stephen A. Edwards Due June 16th, 2010
Columbia University at 11:59 PM in your timezone

On-campus students: submit solution on paper; do not email.
CVN students: FAX the solutions to CVN.
Include your name and your Columbia ID (e.g., se2007).
Do this assignment alone. You may consult the instructor or a

TA, but not other students.
All the problems ask you to use O’CAML. You may down-

load the compiler from caml.inria.fr.

1. In O’Caml, write a function “rmdup” that takes a list and
returns the same list with adjacent duplicate entries re-
moved. Show that for the list[1;1;1;3;4;1;1] your
function returns the list[1;3;4;1]. Hint: my solution is
a six-line, three-way case split.

2. Write a word frequency counter. Here is a starting point: an
ocamllex program (wordcount.mll) that gathers in a list of
strings all the words in a file, then prints them.

{ type token = EOF | Word of string }

rule token = parse
| eof { EOF }
| [’a’-’z’ ’A’-’Z’]+ as word { Word(word) }
| _ { token lexbuf }

{
let lexbuf = Lexing.from_channel stdin in
let wordlist =

let rec next l =
match token lexbuf with

EOF -> l
| Word(s) -> next (s :: l)

in next []
in
List.iter print_endline wordlist

}

Instead of List.iter, write code that scans through the list
and builds a string map whose keys are words and whose
values are the number of times a string was found, then
uses StringMap.fold to convert this to a list of (count, word)
tuples, sorts them using List.sort, and prints them with
List.iter.

Sort the list of (count, word) pairs using

let wordcounts =
List.sort (fun (c1, _) (c2, _) ->

Pervasives.compare c2 c1)
wordcounts in

Compiling and running my (20-more-line) solution:

$ ocamllex wordcount.mll
4 states, 315 transitions, table size 1284 bytes

$ ocamlc -o wordcount wordcount.ml

$./wordcount < wordcount.mll

9 word
7 map
7 let
7 StringMap
6 in
...

3. Extend the three-slide “calculator” example shown at the
end of the Introduction to O’Caml slides (the source is
also available on the class website) to accept the variables
named$0 through$9, assignment to those variables, and
sequencing using the “,” operator. For example,

$1 = 3, $2 = 6, $1 * $2 + 2

should print “20”

Use an array of length 10 initialized to all zeros to store
the values of the variables. You’ll need to add tokens to the
parser and scanner for representing assignment, sequenc-
ing, and variable names.

The ocamllex rule for the variable names, which converts
the numerals 0–9 into the corresponding literals, is

| ’$’[’0’-’9’] as lit
{ VARIABLE(int_of_char lit.[1] - 48) }

The new ast.mli file is

type operator = Add | Sub | Mul | Div
type expr =

Binop of expr * operator * expr
| Lit of int
| Seq of expr * expr
| Asn of int * expr
| Var of int

My solution required adding just 20 lines of code across
the four files.

