
MIDILC: A MIDI Language Compiler for Programmatic
Music Composition

Alex “Akiva” Bamberger
Benjamin Mann

Fredric Lowenthal
Ye Liu

2

Contents

1 Introduction 7

2 Language Tutorial 9
2.1 An Introduction . 9
2.2 Twinkle Twinkle Little Star . 11

3 Language Reference Manual 13
3.1 Lexical Conventions . 13

3.1.1 Tokens . 13
3.1.2 Comments . 13
3.1.3 Identifiers . 13
3.1.4 Keywords . 14
3.1.5 Constants/Literals . 14

3.2 Meaning of Identifiers . 15
3.2.1 Disambiguating Names . 15
3.2.2 Object Types . 15
3.2.3 Objects and lvalues . 16

3.3 Operator Conversions . 16
3.3.1 Conversions of Number and Note . 17
3.3.2 Conversions of Note and Chord . 17
3.3.3 Conversions of Note and Sequence . 17
3.3.4 Conversions of Chord and Sequence 17

3.4 Expressions and Operators . 17
3.4.1 Primary Expressions . 17
3.4.2 Postfix . 19
3.4.3 Unary Operations . 20
3.4.4 Binary Operations . 20

3.5 Declarations . 22
3.5.1 Storage class specifiers . 22
3.5.2 Type specifiers . 22
3.5.3 Type qualifiers . 22
3.5.4 Function Declarators . 22
3.5.5 Initialization . 23

3.6 Statements . 23
3.6.1 Expression statement . 23

3

4 CONTENTS

3.6.2 Compound statement or block . 23

3.6.3 Selection statements . 24

3.6.4 Iteration statements . 24

3.6.5 Jump statements: . 25

3.7 Built-In Functions . 25

4 Project Plan 27

4.1 Development Process . 27

4.2 Style Guide . 27

4.2.1 O’Caml source . 27

4.2.2 Java source . 28

4.2.3 MIDILC source . 28

4.2.4 Testing . 28

4.3 Project Timeline . 28

4.4 Roles and Responsibilities . 29

4.4.1 Akiva Bamberger . 29

4.4.2 Ben Mann . 29

4.4.3 Fred Lowenthal . 29

4.4.4 Ye Liu . 29

4.5 Languages and Tools Used . 30

4.6 Project Log . 30

4.6.1 SVN Activity . 30

4.6.2 SVN Log . 32

5 Architecture & Design 45

5.1 Block Diagram . 45

5.2 Interface between components . 46

5.3 Who Implemented What . 46

6 Test Plan 47

6.1 Representative Source . 47

6.1.1 For Loop . 47

6.1.2 Set Instrument . 49

6.1.3 Arpeggiate . 51

6.2 Testing automation . 53

7 Lessons Learned 55

7.1 Most Important Lessons . 55

7.1.1 Akiva Bamberger . 55

7.1.2 Ben Mann . 55

7.1.3 Fred Lowenthal . 56

7.1.4 Ye Liu . 56

7.2 Advice for Future Teams . 57

CONTENTS 5

8 Appendix 59
8.1 ast.ml . 59
8.2 bytecode.ml . 61
8.3 compile.ml . 64
8.4 execute.ml . 67
8.5 midilc.ml . 73
8.6 parser.mly . 73
8.7 scanner.mll . 76
8.8 components/CSV2MIDI.java . 77
8.9 components/InstrumentCheck.java . 83
8.10 sorted instruments.csv . 84
8.11 tests/pi-symphony.m . 87
8.12 tests/test-add.m . 89
8.13 tests/test-arpeggio.m . 90
8.14 tests/test-casts.m . 90
8.15 tests/test-chord.m . 91
8.16 tests/test-chromatic.m . 91
8.17 tests/test-chromatic-subscript.m . 92
8.18 tests/test-direct1.m . 93
8.19 tests/test-direct.m . 93
8.20 tests/test-divide.m . 94
8.21 tests/test-dvorak.m . 96
8.22 tests/test-equality.m . 99
8.23 tests/test-for1.m . 99
8.24 tests/test-for2.m . 100
8.25 tests/test-for3.m . 100
8.26 tests/test-for4.m . 101
8.27 tests/test-for5.m . 102
8.28 tests/test-gen-harmony.m . 103
8.29 tests/test-global.m . 105
8.30 tests/test-harmonicminor.m . 106
8.31 tests/test-inequality.m . 107
8.32 tests/test-instrument.m . 108
8.33 tests/test-major.m . 108
8.34 tests/test-majorscale.m . 109
8.35 tests/test-melodicminor.m . 110
8.36 tests/test-melody.m . 111
8.37 tests/test-minor.m . 112
8.38 tests/test-multiply.m . 113
8.39 tests/test-naturalminorscale.m . 113
8.40 tests/test-note.m . 114
8.41 tests/test-numerical-equality.m . 115
8.42 tests/test-play-chord.m . 115
8.43 tests/test-play-note.m . 116
8.44 tests/test-rand.m . 116

6 CONTENTS

8.45 tests/test-recursion.m . 117
8.46 tests/test-sequence.m . 118
8.47 tests/test-shift.m . 118
8.48 tests/test-stairway.m . 119
8.49 tests/test-sub.m . 120
8.50 tests/test-subscript.m . 120
8.51 tests/test-tempo.m . 121

Chapter 1

Introduction

The language, hereafter referred to as MIDILC (pronounced MIDDLE C, standing for MIDI
Language Compiler), allows programmers to compose music. It compiles into MIDI format
and has syntax that is similar to Java, changing the basic primitives and the meaning of
various operators (Fig 1.1).

The langauge is dynamically typed. Types must be used upon variable declaration, but
are left optional for function declarations and arguments. Each type can be safely cast up in
the following order: Number→ Note→ Chord→ Sequence. The standard library, written in
the language itself, supports major and minor chords, arpeggios, repetition, and other such
basic and often used concepts. Note durations are specified in terms of whole notes (w),
halves (h), quarters (q), eigths (e), and sixteenths (s). Sequences can either be appended
to, which advances the “current time” by however long the appended sequence is, or else
something can be inserted into a sequence at a given offset using subscripting. Functions
are specified in the same way as in C.

Sequences and Chords can be output to the intermediate representation (IR) of CSV
format using the play() function. In order to actually write the MIDI files, the CSV is fed
to a Java program that interprets the CSV using the javax.sound.MIDI package.

Composing music on a computer is often done using GUIs that allow the user to drag and
drop notes or using instrument inputs. This lets the musician hear his compositions as he
is creating them, and often gives the musician a simple MP3 or MIDI ouput. As computer
scientists, the MIDILC team finds such methods tedious, extraneuous and requiring too much

Number a value between −231 and 231 − 1
Note a musical note with pitch and duration
Chord stores notes with equal durations and start

times, represented by an integer list
Sequence a sequence of notes and chords, represented by

a list of integer lists
+, - increase or decrease duration of notes; append

to chords or sequences
.+, .- increase or decrease pitch of notes

Figure 1.1: Types and selected operators in the MIDILC language.

7

8 CHAPTER 1. INTRODUCTION

natural music talent. MIDILC appeals to the virtues of any great programmer: laziness,
hubris, and impatience 1 and propose a language for those wishing to turn their quantitative
skills into beautiful music.

MIDILC also attempts to redress other issues of regular music composition. Songs of-
ten have frequent recurring themes. Manually reusing these themes requires precision and
dedication. If pieces of a song could be manipulated automatically for reuse and slight mod-
ification, song production speed could increase dramatically. The MIDILC language allows
programmers to algorithmically generate notes, chords, and sequences of notes and chords by
writing functions. This allows for writing interesting compositions that minimize time spent
rewriting basic MIDI manipulation routines and implementing primitive musical constructs.
The language works optimally with compositions that make consistent use of simple motifs
as it encourages reuse of simple mathematical operations on notes and chords.

MIDILC is tailored for crafting melody sequences. For a sequence containing a series
of whole notes, one could easily manipulate the notes in the melody to create sequences of
counterpoints to the melody. Using MIDILC, a major() and minor() function are easy to
craft and chords simple to arpeggiate to make counterpoint. MIDILC allows for the simple
concatenation and composition of sequences, and so complicated sequences could be easily
made from simple starting blocks.

1Wall, Larry. Programming Perl, O’Reilly 2000.

Chapter 2

Language Tutorial

MIDILC was designed with the programmer in mind, but uses all the musical notation famil-
iar to the musician. The lanuage is robust enough to fully support the idiomatic construction
of Notes and Chords, as well as set tempo and note duration using Note and Number literals.

2.1 An Introduction

MIDILC is a C-like language used for generating midi music algorithmically. Each source
file, with the extension .m, should contain a main() method. Like C, each line of code should
be terminated with the semicolon.

main() {

some_function();

MIDILCs basic types are Number, Note, Chord, and Sequence, the last three of which
can be written into .midi files and played. All variables must be declared, one at a time,
before they are called.

Numbers, the most basic type in MIDILC, supports integer values from −231 to 231 − 1
MIDI instruments and notes.

Number num; /*declares the variable num */

num = 4; /* sets num to 4 */

num = num + 1; /* increment num by 1,

so that it is now the value 5 */

/** The following snippet will provide a Note, the simplest

of the playable musical types. */

Note n; /* declares the variable n*/

n = A; /* sets n to the note A, which by default is in

the 3rd octave and a quarter note */

9

10 CHAPTER 2. LANGUAGE TUTORIAL

/** Notes can also be initiated with more options:*/

n = A4w; /* sets n to the note A, in the 4th octave, as a whole note */

n = A4w + 4; /* sets n to A in the 4th octave as a whole note,

adds 4 beats (a quarter notes worth) to its duration */

n = A4w .+ 4; /* sets n to A in the 4th octave as a whole note, then

increase its pitch by 4 half steps (to C sharp) */

The next type, Chord, can be constructed from scratch, or based on notes that already
exist. Unlike Note, Chord objects must be initiated with the new_chord() function. Notice
that since the += operator is not supported, adding to a Chord requires one to set the Chord
to itself plus the added object.

Chord a;

Chord b;

Chord c;

Chord d;

a = new_chord(); /* initializes a Chord object that plays nothing */

b = new_chord(C, E, G); /* initializes b to be a C major chord in the

(default) 3rd octave with (default) duration

of a quarter note*/

c = new_chord(n); /* initializes c to be a chord containing Note n */

a = a + n; /* adds the note n to a, which previously contained nothing playable */

Sequence objects can be thought of as a collection of Note, Chord, and other Sequence
objects. Construction of new Sequence objects is similar to that of new Chord objects. Both
Note and Chord objects can be added to a Sequence object, in any permutation.

Sequence s1; /* declares s1 */

Sequence s2; /* declares s2 */

s1 = new_sequence(); /* initializes s1; empty sequence */

s2 = new_sequence(); /* initializes s2; empty sequence */

s1 = s1 + C4e; /* adds a note to s1 (4th octave C, eighth note duration) */

s1 = s1 + R; /* adds a rest to s1 */

s2 = s2 + a; /* adds Chord object a to s2 */

s2 = s2 + b; /* adds Chord object b to s2 */

Finally, to print Sequence objects to .midi, the play()function is invoked. play() takes
as an argument a Sequence. Multiple calls of play() in the same file will result in many
Sequences played at once.

play(s1); /* prints s1 out*/

play(s2); /* prints s2 out*/

2.2. TWINKLE TWINKLE LITTLE STAR 11

To compile the program that you have just written, type the following into the command
line:

./midilcc sample_program.m [sample_program_output]

The last parameter is optional; if not given, a default name consisting of the name of the
.m file with a .csv extenion will be given to the output CSV file. The compiler will print out
any errors that may have occurred, and if the compilation was successful, a .csv file and a
.midi file will be created in the same directory as the .m file. Simply open the .midi file with
any media player to play it.

2.2 Twinkle Twinkle Little Star

The following tutorial will guide you through a simple program written in MIDILC, which
produces a .midi file of the familiar tune Twinkle Twinkle Little Star. The full code can be
found in the appendix.

The source files of MIDILC are saved as .m text files. First, create a .m file; call it
twinkle.m. We will have one function, namely the main() function, for all the code in this
program. We declare the main() function, and declare all the variables used, one per line:

/* twinkle twinkle little star*/

/** Function declaration for main(), necessary for

each MIDILC file */

Void main(){

/** Declare variables */

Chord ch1;

Chord ch2;

Chord ch3;

Sequence s;

Number i;

Number r1;

Number r2;

/** Initialize chords */

ch1 = new_chord(C,E,G);

ch2 = new_chord(C,F,A);

ch3 = new_chord(G3s,B3s,D4s,F4s);

/** Initialize sequence */

s = new_sequence();

/** Build sequence up */

s = s + C + C;

s = s + ch1 + ch1 + ch2 + ch2 + ch1;

12 CHAPTER 2. LANGUAGE TUTORIAL

s = s + arpeggiate(ch3) + F + F;

s = s + E + E + D + D + C;

set_tempo(125);

play(s);

}

/** Function declaration for arpeggiate */

Sequence arpeggiate(Chord chord)

{

/* declare variables */

Number chord_length;

Number i;

Sequence s;

/* build sequence */

s = new_sequence();

chord_length = chord.length;

for(i = 0; i < chord_length; i=i+1)

{

s = s + chord[i];

}

return s;

}

Congratulations, you have just written your first MIDILC program! To compile the
program, invoke the MIDILC compiler (midilcc), as described in the previous section.

Chapter 3

Language Reference Manual

MIDILC is a C-like language that makes it simpler to algorithmically generate music. It
simplifies MIDI music creation by allowing programmers to specify song information in
musical terms and write functions that process existing musical information. By building off
of simpler musical functions, such as arpeggios and chords, complex musical compositions
can easily be programmed.

To eliminate the programming complexities from the MIDILC language, it has limited
scope and data management capabilities. MIDILC can be used following an imperative or
functional paradigm and reduces hassle for the programmer by forcing static scope.

It compiles into MIDI files that can then be played in any standard media player.

3.1 Lexical Conventions

3.1.1 Tokens

Tokens consist of identifiers, keywords, constants, operators, and separators. As with C,
MIDILC is a free-form language and all white space characters are ignored (with the excep-
tion of separating tokens), as braces are used to identify the start and end of code blocks
and semicolons are used to end statements.

3.1.2 Comments

/* and */ are used to indicate a block of comments (C-style comments). There are no
C++-style comments in MIDILC.

3.1.3 Identifiers

These are sequences of letters, digits, and underscores, starting with a letter or underscore.
Identifiers cannot be of the format [A-G R][b#]?[0-9]?[w h q e s]?, as these are re-
served for Note literals.

13

14 CHAPTER 3. LANGUAGE REFERENCE MANUAL

Figure 3.1: The correspondence of notes and pitches in MIDI.

3.1.4 Keywords

MIDILC has very few keywords; these include the following:
Types Control
Number return

Note continue

Chord break

Sequence if

Void else

while

for

3.1.5 Constants/Literals

MIDILC allows a user to construct Notes using pitch and duration (as Number types), or
using a set of Note literals, specified by the note letter, accidental (if any), MIDI octave,
and a letter that indicates the notes duration (optional, and defaulting to a quarter note).
Duration can be specified by w (for whole note), h (for half note), q (for quarter note),
e (for eigth note), and s (for sixteenth note). Rests are indicated by using R instead of
a note. Any Note object constructed using a pitch with illegal properties will result in
an error. Chords can easily be expressed using built-in chord generation function calls on
Note literals. In addition, Number literals also exist (integral numbers limited to signed 32-
bit range). MIDILC does not have floating-point literals. Note that literals look like the
following: Ab7, C4s, G5h

Pitches and Number literals have the correspondence shown in figure 3.1.

3.2. MEANING OF IDENTIFIERS 15

3.2 Meaning of Identifiers

Identifiers in MIDILC have the following attributes: scope, name space, linkage, and storage
duration. Since static scope is handled automatically, there are no storage class specifiers in
MIDILC.

3.2.1 Disambiguating Names

Scope

The scope of of an identifier is defined as the region of a program within which it is visible,
and begins when it is declared. In MIDILC, all identifiers are globally scoped, and are
therefore visible to all blocks within a program unless hidden in another scope. This is due
to the fact that the language automatically handles static identifiers.

Name Space

All the identifiers in MIDILC are categorized as ordinary identifiers. These include user-
defined type names, object names, and function names.

Linkage of Identifiers

Identifiers in MIDILC may be linked across different files of the same program, but the
identifier name must be unique in all files. Furthermore, the compiler will generate a compile
time error about the identifier if there is a conflict.

Storage Duration

Storage duration denotes the lifetime of an object. All objects in MIDILC are static, and
have static storage duration. The initialization of these objects occurs only once, prior to
any reference.

3.2.2 Object Types

The MIDILC language supports two types of objects: numbers and musical notations. Ob-
jects are dynamically typed. Typing of an identifier is determined on assignment.

Number type

The only supported numerical type is Number, which has a size of 32 bits and ranges from
−231 to 231 − 1. This is also the underlying type for all fields within the musical types.

Musical types

Note, Chord, and Sequence are all of the musical types supported by MIDILC. Note literals
are made up of strings consisting of integers and characters in sequences that match the
following regular expression: [A-G R][b #]?[0-9]?[w h q e s]? As these types are not

16 CHAPTER 3. LANGUAGE REFERENCE MANUAL

stored directly internally, their sizes are not exact. As a general rule, for non-empty objects,
Number < Note < Chord < Sequence in terms of their relative sizes.

Note type Note type has the following attributes: pitch and duration. Pitch refers to
the frequency of the note (Fig 3.1), and duration is specified as a type of note: whole, half,
quarter, eighth, or sixteenth. Note literals with the pitch indicated as R instead of A-G are
rests (numerically represented as -1).

Chord type Chord type has the following attributes: duration and length. Duration
is a Number type that specifies a type of note: whole, half, quarter, eighth, or sixteenth.
All Note literals within the same Chord must have the same duration. This property
can be specified as number of sixteenths. Length of the Chord refers to the number of
Note literals in the Chord. Chord literals can be constructed with the following syntax:
new_chord(Note n1, Note n2, Note n3);

Sequence type Sequence type has the following attributes: current and length. Each is
of type Number. Current denotes the current time where a new note will be inserted if a Note

or Chord is added to this object. The length of the Sequence refers to the number of Note
literals or Chord objects in the Sequence. Sequences can be constructed with the following
command: new_sequence().

Derived types

Note, Chord and Sequence objects can be derived. Note can be derived from a Number

(specifying the pitch of the Note, with duration of a quarter note). A Chord be derived from
a collection of Note objects. A Sequence can be derived from a collection of Note or Chord
objects.

Void type

The Void type specifies an empty set of return values. It never refers to an object.

3.2.3 Objects and lvalues

An object is a manipulable region of storage. An lvalue is an expression referring to an
object, for example, an identifier. Assignment causes the region of memory specified by the
lvalue to be replaced or modified according to the value on the right side of the assignment.
For instance, if a = b and c = b, if b is changed, a and b will remain unchanged.

3.3 Operator Conversions

Due to the nature of the primitive types, very few conversions are supported in MIDILC. It
is possible to cast from Number to Note, from Note to Chord, from Note to Sequence, and
from Chord to Sequence. Casts cannot be done in the opposite direction.

3.4. EXPRESSIONS AND OPERATORS 17

assignment-expression note = Ab7

operation-expression Ab7 .+ 4

Figure 3.2: Examples of expressions

3.3.1 Conversions of Number and Note

Number objects can be converted into Note objects as a note with the pitch represented as
an integer in MIDI notation. Note objects cannot be converted to Number objects. The new
object has a default duration of quarter note.

3.3.2 Conversions of Note and Chord

Note objects can be converted into Chord objects as one-note chords. Chord objects cannot
be converted into Note objects, as this is a narrowing conversion. The resulting Chord has
the same duration as the Note used to construct it.

3.3.3 Conversions of Note and Sequence

Note objects can be converted into Sequence objects as a sequence that contains a single note.
Sequence objects cannot be converted into Note objects, as this is a narrowing conversion,
even if the Sequence contains only a single Note.

3.3.4 Conversions of Chord and Sequence

Chord objects can be converted into Sequence objects as a sequence that contains a single
chord. Sequence objects cannot be converted into Chord objects, as this is a narrowing
conversion, even if the Sequence contains only a single Chord.

3.4 Expressions and Operators

In MIDILC, expressions include one or more operators and a number of operands that follow
certain associativity rules. Operators may change the value of an operand or leave it alone.

Expressions (Fig 3.2) can be used for assignment or other operations. Associativity of
these assignments can be overrridden by parentheses (Fig 3.3). Associativity of operators
followed the table shown in figure 3.4.

3.4.1 Primary Expressions

Identifiers

An lvalue or function designator (discussed in Built-In Functions).

Constants

An object of constant value (discussed in Built-In Functions).

18 CHAPTER 3. LANGUAGE REFERENCE MANUAL

Expression Result Explanation
C7 .+ 4 E7 Note with E7 pitch
3 + 2 * 4 11 Regular assignment or-

der (multiplication has
tightest binding, then
addition)

(3 + 2) * 4 20 Parentheses change or-
der of operations

note = C7;

new_chord(note,

note .+ 4,

note .+ 7);

Chord of (C7, E7, G7) Addition operator has
tightest binding, fol-
lowed by the assign-
ment operator

Figure 3.3: Associativity overridden by use of parentheses.

Tokens
(From High to
Low Priority)

Operators Class Associativity

Identifiers, con-
stants, parenthe-
sized expression

Primary expres-
sion

Primary

() [] . Function calls,
subscripting,
direct selection

Postfix L-R

id as Type Cast Binary L-R
* / Times/Divide Binary L-R
.+ .- DotPlus/DotMinus Binary L-R
+ - Add/Minus Binary L-R
== != Equality compar-

isons
Binary L-R

< <= >= > Relational Com-
parisons

Binary L-R

&& Logical and Binary L-R
|| Logical or Binary L-R
= Assignment Binary R-L
, Comma Binary L-R

Figure 3.4: Order of operations for built in operators

3.4. EXPRESSIONS AND OPERATORS 19

Parenthesized Expressions

Parenthesized expressions allow a user to change the order of operations. They are executed
before the operations and can be used as part of a larger expression (Fig 3.3).

3.4.2 Postfix

Postfix calls are made as follows:
Function call Chord c; c = new_chord(Ab6, Ab7, C4);

Subscripting Note n; n = c[0];

Direct selection Number i; i = n.pitch;

Function calls

The syntax of a function call is as follows:
postfix-expression → (argument-expression-listopt)
argument-expression-list → argument-expression

→ argument-expression-list, argument-expression
An argument expression list may either be a single argument or a list of arguments. All

functions are allowed to be recursive. Each function must be declared before it is called.
With that in mind, certain casts are made by the runtime compiler to match arguments.
A Number may be cast to a Note, Chord, or Sequence, for example. A function may only
take the a parameter of type Void. For functions like this, a function call may include no
parameters.

Subscripting

Certain objects may be acted upon by the subscripting operation. For example, a Chord

object may be acted upon by a subscript to select a particular note in the chord. Similarly,
a Sequence object may be acted upon to select a Chord at any particular moment in time.
For a Chord object, the index of the subscript reflects the order that a Note was added. For
a Sequence object, the index subscript indicates the order that Chords were inserted in.
The subscripting operator allows both retrieval and mutation of elements in those objects
that support it. There is no implicit casting for subscription.

Direct Selection

Used to change pitch and duration in objects of type Note, Chord, or Sequence. Pitch and
duration are treated as objects of type Number with the pitch affected (either positively or
negatively) by the successor operand. For example, C7.pitch = C7.pitch + 1 will result
in C#7. Similarly for duration: C7.duration = C7.duration + 1 will result in C7 with a
duration of a 1/16th note greater. Direct selection can be done for the following parameters
on the following objects: Note: pitch, duration Chord: duration, length Sequence: current,
length. Note, however, that length cannot be used as an lvalue.

20 CHAPTER 3. LANGUAGE REFERENCE MANUAL

3.4.3 Unary Operations

Casting

Syntax of casting is as follows:
cast-expression → unary-expression

→ (cast-expression as type-name)
Casting allows a user to explicitly change the Type of an object, according to the order

established in Musical Types. Implicitly casting will take place during a function call or in
the use of a binary operator between two objects of different type. If, however, we wanted
to craft two notes, and then append one to another in a chord, we would need to do the
following: s = (((note1 as Chord) as Sequence) + note2) This would allow us to use
the + operator of Sequences instead of the + operator of Notes.

3.4.4 Binary Operations

Mult/Divide

Used to multiply or divide two Number objects.

Syntax is as follows:

mult-divide-expression → argument-expression
→ mult-divide-expression ∗ argument-expression
→ mult-divide-expression/argument-expression

DotAdd/DotMinus

Used to increment or decrease the pitch of a Note object.

Syntax is as follows:

dot-plus-minus-expression → argument-expression
→ dot-plus-minus-expression. + argument-expression
→ dot-plus-minus−expression.− argument-expression

Add/Subtract

Used to add or subtract two Number objects. When applied to objects of type Note, Chord,
or Sequence, results in a Sequence object with given elements concatenated. If two or more
objects of different type are concatenated, the element of highest cast determines the cast.
That is, a Note added to a Sequence would return a new Sequence with the given note
appended as a degenerate Chord to the end.

Syntax is as follows:

add-expression → cast-expression
→ add-expression + cast-expression
→ add-expression− cast-expression

3.4. EXPRESSIONS AND OPERATORS 21

Relational comparisons

Yields a Number result (1 if true, 0 if false). Allows for comparison between objects (casting
is done in one direction).

relational-expression → add-expression
→ relational-expression < add-expression
→ relational-expression > add-expression
→ relational-expression <= add-expression
→ relational-expression >= add-expression

Equality comparisons

Compares two values for equality. MIDILC uses the number 0 to denote false and all values
other than 0 to denote truth. Equality follows the following rules: Two Number objects are
equal if they evaluate to the same value Two Note objects are equal if they have the same
pitch and duration Two Chord objects are equal if they have the same notes and the same
duration Two Sequence objects are equal if they have the same chords in the same order

equality-expression → relational-expression
→ equality-expression == relational-expression
→ equality-expression != relational-expression

Logical and

Performs a logical “and” on two expressions. Returns 0 if the left expression evaluates to 0.
Otherwise, evaluates right expression. If true, returns 1; if false, 0. Syntax:

logical-AND-expression → logical-OR-expression
→ logical-AND-expression && logical-OR-expression

This is done with lazy evaluation.

Logical or

Performs a logical “or” on two expressions. Returns 1 if ever the left expression evaluates to
1. Otherwise, evaluates right expression. If true, 1; if false, 0. Syntax:

logical-OR-expression → logical-AND-expression
→ logical-OR-expression || logical-AND-expression

This is again an example of MIDILCs power to perform lazy evaluation.

Assignment

Right associative. The expression on the right is evaluated and then used to set the lvalue.
The rvalue must have the same type as the lvalue; no casting is implicitly done.

Comma

Separates elements in a list (such as parameters in a function or Note literals in a Chord).
Example of Chord constructor: Chord myChord; myChord = new_chord(C4, E4);

22 CHAPTER 3. LANGUAGE REFERENCE MANUAL

3.5 Declarations

Declarations specify the interpretation given to a set of identifiers.
direct-declarator → type-specifier declarator

Only a single declarator can be declared at once. Declarators must be preceded by the
type of the identifier. At most one declaration of the identifier can appear in the same scope
and name space.

3.5.1 Storage class specifiers

Static scope is handled automatically because functions have access to any identifiers not
declared in their scope. No storage class specifiers are available.

3.5.2 Type specifiers

Type specifiers listed below. Syntax as follows:
type-specifier Void

Number

Note

Chord

Sequence

3.5.3 Type qualifiers

Types cannot be declared mutable or immutable by the programmer. All types are mutable.

3.5.4 Function Declarators

There are no function prototypes (all function declarations are definitions). The syntax for
function declarators is shown below:

direct-declarator → (identifier-listopt) body
identifier-list → identifier-list, direct-declarator

For example, T D (identifier-listopt) creates a function with identifier D and return type
T with the specified parameters. An identifier list declares the types of and identifiers for
the formal parameters of a function.

Function declarators do not support variable additional arguments.
If the type of any parameter declared in the identifier list is other than that which would

be derived using the default argument promotions, an error is posted. Otherwise, a warning
is posted and the function prototype remains in scope.

When a function is invoked for which a function is defined, no attempt is made to convert
each actual parameter to the type of the corresponding formal parameter specified in the
function prototype. Instead an error is thrown.

The following is an example of a function definition: Chord transposeChord(Chord oldChord,

Note newKey) { ... } This declares a function transposeChord() which returns a Chord

and has two parameters: a Chord and a Note.

3.6. STATEMENTS 23

3.5.5 Initialization

A declaration of a type can specify an initial value for the identifier after being declared.
The initializer is preceded by = and consists of an expression.

initializer → assignment-expression

Variables that are not explicitly initialized may cause a null pointer exception during
compilation. When an initializer applies to a literal, it consists of a single expression, perhaps
in parentheses. The initial value of the object is taken from the expression. Type conversion
is only attempted with an explicit cast.

Examples of initialization

Note root;

Chord notes;

Sequence gProgression;

/*Initializes root with a note literal.*/

root = C3q;

/*Initializes notes with a chord literal*/

notes = new_chord(root, root .+ 4, root .+ 7);

/*Initializes gProgression with the result of the function call.*/

gProgression = oneFourFiveProg(G7q);

3.6 Statements

A statment is a complete instruction to the midi compiler. Except as indicated, statements
are executed in sequence. Statements have the following form:

statement → expression-statement
→ selection-statement
→ iteration-statement
→ jump-statement

3.6.1 Expression statement

Most statements are expression statements, which have the following form:
expression-statement → expression;

Usually expression statements are expressions evaluated for their side effects such as
assignments or function calls.

3.6.2 Compound statement or block

A compound statement (or block) groups a set of statements into a syntactic unit. The set
can have its own declarations and initializers, and as the following form:

24 CHAPTER 3. LANGUAGE REFERENCE MANUAL

compound-statement → {declaration-list statement-listopt}
declaration-list → declaration

→ declaration-list declaration
statement-list → statement

→ statement-list statement
Declarations within compound statements have block scope. If any of the identifiers in

the declaration list were previously declared, the outer declaration is hidden for the duration
of the block, after which it resumes its force. Function declarations can only be defined at
the outermost scope.

3.6.3 Selection statements

Selection statements include the if and else statements and have the following form:
selection-statement → if (expression) statement

→ if (expression) statement else statement
Selection statements choose one of a set of statements to execute, based on the evaluation

of the expression. The expression is referred to as the controlling expression.

if statement

The controlling expression of an if statement must have Number type. For both forms of
the if statement, the first statement is executed if the controlling expression evaluates to
nonzero. For the second form, the second statement is executed if the controlling expression
evaluates to zero. An else clause that follows multiple sequential else-less if statements is
associated with the most recent if statement in the same block (that is, not in an enclosed
block).

3.6.4 Iteration statements

Iteration statements execute the attached statement (called the body) repeatedly until the
controlling expression evaluates to zero. In the for statement, the second expression is the
controlling expression. The format is as follows:

iteration-statement → while(expression) statement
→ for (expression; expression ; expression) statement

The controlling expression must have Number type.

while statement

The controlling expression of a while statement is evaluated before each execution of the
body.

for statement

The for statement has the form specified above. The first expression specifies the initializa-
tion for the loop. The second expression is the controlling expression, which is evaluated

3.7. BUILT-IN FUNCTIONS 25

before each iteration. The third expression often specifies incrementation. It is evaluated
after each iteration. It is equivalent to the following:

expression-1 → while (expression-2) {statement expression-3}
One exception exists, however. If a continue statement is encountered, expression-3 of

the for statement is executed prior to the next iteration.

3.6.5 Jump statements:

jump-statement →continue

→break

→return expressionopt;

continue statement

The continue statement can appear only in the body of an iteration statement. It causes
control to pass to the loop-continuation portion of the smallest enclosing while or for

statement; that is, to the end of the loop.

break statement

The break statement can appear only in the body of an iteration statement or code at-
tached to a switch statement. It transfers control to the statement immediately following
the smallest enclosing iteration, terminating its execution.

return statement

A function returns to its caller by means of the return statement. The value of the expression
is returned to the caller as the value of the function call expression. The return statement
cannot have an expression if the type of the current function is Void. If the end of a function
is reached before the execution of an explicit return, an implicit return (with no expression)
is executed. If the value of the function call expression is used when none is returned, the
behavior is undefined.

3.7 Built-In Functions

Void play(Sequence s) Instructs compiler to write a
Sequence to the MIDI file.

Void set_tempo(Number n) Sets the tempo of the file to Number.
Void set_instrument("instrument") Sets the instrument for the song
Sequence new_sequence() Initializes an empty Sequence.
Chord new_chord(Note n1, Note n2, ...) Initializes a Chord object.
Number rand(Number n) Returns a random number between 0

and n.

26 CHAPTER 3. LANGUAGE REFERENCE MANUAL

Chapter 4

Project Plan

4.1 Development Process

The team met once a week on Sundays to set milestones and deadlines as well as discuss
progress and set design goals. The language was first designed using a collaborative approach,
using whiteboards to brainstorm and Google Docs to save notes.

The team used an SVN repository hosted on Google Code to store code. Development
was done using open source text editors, including vim, Eclipse, and gedit. Code was written
in OCaml for the compiler and in Java for the Assembler. The Intermediate Representation
(IR) for the code was in CSV format, which was created by executing the bytecode. Team
members updated the repository at the end of each development session. E-mail and Google
Docs were used for realtime collaboration.

With a few exceptions each module was accompanied with tests written by the module’s
author. Team members were expected to supply both a test and an expected output, which
could be used to verify the success of a test by each team member. Scripts were written to
quickly test the code and compare it to the standard.

4.2 Style Guide

A general style guide was used by the team during development.

4.2.1 O’Caml source

• Variables named using lowercase letters, with spaces replaced by underscores.

• Types named using lowercase letters with spaces replaced by underscores (e.g. program,
expr)

• Tokens named using uppercase letters without spaces (e.g. TYPE, NOTE)

• Constructors named using Camel Case (e.g. Binop, Num)

• Modules named using uppercase first letter, lowercase rest (e.g. Ast, Bytecode)

27

28 CHAPTER 4. PROJECT PLAN

• 2 spaces for each tab

• Comments about specific implementation details using (* single asterisk comment *)

• Comments about general implementation details using (** double asterisk comment *)

• Meaningful variable names for all global variables (e.g. note_map, jumps)

• Fewer than 140 character per line (viewable without runoff with window maximized)

• Keep lines aligned

4.2.2 Java source

• Kept all tests in src/components/ folder

4.2.3 MIDILC source

• Named all variables and functions with lowercase first letters

• Added a multi-line C style comment (/** */) at the top of each class

• Named classes with ‘.m’ extension (for MIDILC)

• Declared all variables at top of each method

4.2.4 Testing

• Kept all tests in src/tests/ folder

• Named all tests with gold standards with prefix “test-”

• Named all output files for gold standard tests with .out

4.3 Project Timeline

11/20 Finish project plan and arch design sections of
final report
Mostly complete scanner, top level, and AST

11/27 Each person should have finished at least one
unit test that works for his component
Make major headway on parser and compiler

12/4 Finish testing plan
12/11 Finish overall system (source should compile

into MIDI files)
12/18 Finish up final sections of report

4.4. ROLES AND RESPONSIBILITIES 29

4.4 Roles and Responsibilities

4.4.1 Akiva Bamberger

Designed initial structure of typing system and operators. Wrote parts of proposal and LRM.
After working on the initial scanner and AST (of a statically typed prototype), worked to
build the modules for the dynamically typed language Ben developed while working on
executer and compiler. Worked on modules included printing sequences to the correct CSV
output, constructing new chord objects, adding break and continue, and allowing users to
treat the language as statically typed. Improved the bytecode, improved the implementation
of some operators, and wrote many tests, working with Fred and Ye. Edited and wrote many
parts of the final report.

4.4.2 Ben Mann

Worked with Fred to set up project milestones and start writing the final report. Wrote
proposal and sections 5 and 6 of the LRM. Starting with MICROC, implemented the major
features of the language, including the dynamic typing system, most of the operators; in other
words, the necessary parts of the toplevel, scanner, AST, parser, compiler, and executor.
Designed and implemented the bytecode representation. Wrote the first tests in the language
for the basic features and wrote the first script to turn a file from MIDILC code into a .wav file
that could be listened to for accuracy. After the language compiled, distributed tasks to other
team members and taught them how the type system and other details were implemented.

4.4.3 Fred Lowenthal

My contributions to the written portions of the project were contributing to the proposal
and LRM, and planning and writing parts of the final report

In terms of contributions to the project development, I worked on the initial parser
(though many changes were made afterwards). I also modified the assembler to handle setting
instruments and tempo, through the programming and requisite research. I also implemented
some parts of the compiler and executor (and several necessary parser/AST/lexer/bytecode
changes as necessary) for the tempo and instrument functions, along with adding the requisite
String literal type. I also finished implementing several operators.

4.4.4 Ye Liu

Worked on the proposal and LRM. Worked with Fred on the assembler, modifying it and
taking out extra MIDI detais that are out of the scope of MIDILC. Wrote test cases for
library functions (most scales), and some newer features (multiply). Worked on assembling
the final report.

30 CHAPTER 4. PROJECT PLAN

4.5 Languages and Tools Used

The team used O’Caml, Java, and bash scripting to complete the langauge. The tools used
included: gedit and Vim for editing O’Caml; Eclipse for editing Java; and gedit for edit-
ing bash scripts. The javax.swing.midi library proved most useful for transcribing MIDI
from CSV. A CSV2MIDI library was also used, originally authored by Stephen Steffes
(http://www.penguinpeepshow.com/CSV2MIDI.php). timidity, a .midi-to-.wav converter,
was used to convert .wav files from the MIDI output by the assembler. A Google code
hosted SVN repository was used for version control. E-mail and Google Docs were used to
share documentation.

4.6 Project Log

4.6.1 SVN Activity

Size of directories

4.6. PROJECT LOG 31

Size of code as a function of time

Actions by time of day

32 CHAPTER 4. PROJECT PLAN

4.6.2 SVN Log

--

r137 | Akiva.Bamberger | 2010-12-20 00:10:37 -0500 (Mon, 20 Dec 2010) | 2 lines

Final Report!

--

r136 | Akiva.Bamberger | 2010-12-19 23:37:11 -0500 (Sun, 19 Dec 2010) | 2 lines

Updated final report. Working on final tidbits.

--

r135 | Akiva.Bamberger | 2010-12-19 21:25:13 -0500 (Sun, 19 Dec 2010) | 3 lines

Updated final reports.

--

r134 | 8enmann@gmail.com | 2010-12-19 19:37:14 -0500 (Sun, 19 Dec 2010) | 2 lines

Added graphical statistics on svn commit history.

--

r133 | 8enmann@gmail.com | 2010-12-19 15:34:01 -0500 (Sun, 19 Dec 2010) | 3 lines

updated

--

r132 | 8enmann@gmail.com | 2010-12-19 14:51:42 -0500 (Sun, 19 Dec 2010) | 2 lines

Fixed some formatting, added some TODOs, and added role/responsibility for me.

--

r131 | yeliu2428@gmail.com | 2010-12-19 14:36:26 -0500 (Sun, 19 Dec 2010) | 1 line

Did some formatting. Added Fred’s section 7 contributions.

--

r130 | yeliu2428@gmail.com | 2010-12-19 14:14:25 -0500 (Sun, 19 Dec 2010) | 1 line

Updated blockdiagram.png to have a white background (so we can see what the hell is going on.)

--

r129 | yeliu2428@gmail.com | 2010-12-19 10:56:58 -0500 (Sun, 19 Dec 2010) | 1 line

4.6. PROJECT LOG 33

Added to Section 6, testing

--

r128 | yeliu2428@gmail.com | 2010-12-19 10:45:43 -0500 (Sun, 19 Dec 2010) | 1 line

formatted 2.2, Twinkle Twinkle. Still kinda funky looking.

--

r127 | yeliu2428@gmail.com | 2010-12-19 05:12:28 -0500 (Sun, 19 Dec 2010) | 3 lines

Added in 2.2 (Twinkle Twinkle);

Corrected Fred’s name spelling;

Still need to format Twinkle Twinkle more.

--

r126 | 8enmann@gmail.com | 2010-12-19 04:39:29 -0500 (Sun, 19 Dec 2010) | 3 lines

Corrected an error in variable declaration in the LRM.

--

r125 | Akiva.Bamberger | 2010-12-19 00:29:32 -0500 (Sun, 19 Dec 2010) | 3 lines

Tutorial (by Ye) added to code

--

r124 | Akiva.Bamberger | 2010-12-19 00:05:18 -0500 (Sun, 19 Dec 2010) | 2 lines

Changes made to add "Roles and Responsibilities"

--

r123 | Akiva.Bamberger | 2010-12-18 23:56:52 -0500 (Sat, 18 Dec 2010) | 2 lines

Made changes to get log on the right lines...

--

r122 | Akiva.Bamberger | 2010-12-18 23:55:31 -0500 (Sat, 18 Dec 2010) | 3 lines

Made changes to code to comply with style guidelines.

--

r121 | Akiva.Bamberger | 2010-12-18 23:37:04 -0500 (Sat, 18 Dec 2010) | 2 lines

Updated the final report

--

34 CHAPTER 4. PROJECT PLAN

r120 | Akiva.Bamberger | 2010-12-18 21:02:03 -0500 (Sat, 18 Dec 2010) | 2 lines

Cleaned up the LRM; trucking along with Ye.

--

r119 | yeliu2428@gmail.com | 2010-12-18 18:12:00 -0500 (Sat, 18 Dec 2010) | 2 lines

added block diagram.png

--

r118 | 8enmann@gmail.com | 2010-12-18 16:54:40 -0500 (Sat, 18 Dec 2010) | 2 lines

Made a few comments, but there’s a lot of formatting to fix and info to update.

--

r117 | Akiva.Bamberger | 2010-12-18 16:51:20 -0500 (Sat, 18 Dec 2010) | 2 lines

Incrementally better.

--

r116 | Akiva.Bamberger | 2010-12-18 16:15:43 -0500 (Sat, 18 Dec 2010) | 2 lines

Added stairway to heaven, first part.

--

r115 | yeliu2428@gmail.com | 2010-12-18 01:52:25 -0500 (Sat, 18 Dec 2010) | 1 line

Added test for inequality

--

r114 | yeliu2428@gmail.com | 2010-12-18 01:21:35 -0500 (Sat, 18 Dec 2010) | 1 line

Added test for multiply

--

r113 | 8enmann@gmail.com | 2010-12-17 20:47:48 -0500 (Fri, 17 Dec 2010) | 2 lines

Slightly modified dvorak test.

--

r112 | yeliu2428@gmail.com | 2010-12-17 20:46:40 -0500 (Fri, 17 Dec 2010) | 1 line

Added test for natural minor scale creation.

--

r111 | 8enmann@gmail.com | 2010-12-17 19:36:41 -0500 (Fri, 17 Dec 2010) | 3 lines

Added the most ballin’ test ever.

4.6. PROJECT LOG 35

--

r110 | Fredmaster2 | 2010-12-17 17:47:14 -0500 (Fri, 17 Dec 2010) | 1 line

Implemented setting instruments via name in the assembler. For backwards compatibility, numbers are still supported (using quotation marks)

--

r109 | Akiva.Bamberger | 2010-12-17 16:26:42 -0500 (Fri, 17 Dec 2010) | 2 lines

A symphony of pi!

--

r108 | 8enmann@gmail.com | 2010-12-17 15:03:23 -0500 (Fri, 17 Dec 2010) | 3 lines

French horn ftw.

--

r107 | 8enmann@gmail.com | 2010-12-17 14:54:57 -0500 (Fri, 17 Dec 2010) | 2 lines

Updated test.

--

r106 | 8enmann@gmail.com | 2010-12-17 14:47:51 -0500 (Fri, 17 Dec 2010) | 3 lines

Added multiply and divide.

--

r105 | yeliu2428@gmail.com | 2010-12-17 14:24:27 -0500 (Fri, 17 Dec 2010) | 3 lines

Two things:

1. Changed the author info for the .java files in /components

2. Changed .csv files for the scale tests to .out files

--

r104 | yeliu2428@gmail.com | 2010-12-17 13:41:56 -0500 (Fri, 17 Dec 2010) | 1 line

Added test-melodicminor

--

r103 | yeliu2428@gmail.com | 2010-12-17 13:37:17 -0500 (Fri, 17 Dec 2010) | 1 line

Added test-harmonicminor

--

r102 | yeliu2428@gmail.com | 2010-12-17 13:29:41 -0500 (Fri, 17 Dec 2010) | 1 line

36 CHAPTER 4. PROJECT PLAN

Added test-majorscale to tests.

--

r101 | Fredmaster2 | 2010-12-17 03:01:15 -0500 (Fri, 17 Dec 2010) | 1 line

Forgot to take QUOTE back out

--

r100 | 8enmann@gmail.com | 2010-12-17 02:55:20 -0500 (Fri, 17 Dec 2010) | 2 lines

Fixed warning and some formatting.

--

r99 | yeliu2428@gmail.com | 2010-12-17 02:50:58 -0500 (Fri, 17 Dec 2010) | 1 line

formatted midilc_report.tex with subsections and \verb tags

--

r98 | Fredmaster2 | 2010-12-17 02:41:35 -0500 (Fri, 17 Dec 2010) | 3 lines

Implemented string literals for specifying instruments, and modified test and set_instrument function accordingly.

The assembler has not yet been updated, so the csv files produced with an instrument set will not currently work with the compiler

--

r97 | 8enmann@gmail.com | 2010-12-17 00:12:36 -0500 (Fri, 17 Dec 2010) | 2 lines

Renamed a bunch of tests, added comments, and added attribution.

--

r96 | Akiva.Bamberger | 2010-12-16 23:20:15 -0500 (Thu, 16 Dec 2010) | 2 lines

Updated tex file with latex

--

r95 | yeliu2428@gmail.com | 2010-12-16 23:19:39 -0500 (Thu, 16 Dec 2010) | 1 line

added novice programs to final_report/novice. there’s a program that generates a sequence (test-twinkle), one that generates a random sequence (test-randomseq), and one that generates a two-sequence file (test-doubleseq).

--

r94 | Akiva.Bamberger | 2010-12-16 23:03:42 -0500 (Thu, 16 Dec 2010) | 5 lines

Added final report files.

Working with Ye on getting this pretty.

--

r93 | Fredmaster2 | 2010-12-16 22:07:26 -0500 (Thu, 16 Dec 2010) | 1 line

4.6. PROJECT LOG 37

Added note, chord, and sequence equality and inequality operators, and accompanying test

--

r92 | Fredmaster2 | 2010-12-16 21:05:42 -0500 (Thu, 16 Dec 2010) | 1 line

Fixed PPQ issue - 16 to 4 (i.e. everything’s 4x slower now)

--

r91 | Akiva.Bamberger | 2010-12-16 20:56:50 -0500 (Thu, 16 Dec 2010) | 2 lines

Changed code to allow addition of two notes-- this results in the duration of the second being added on to the duration of the first.

--

r90 | Akiva.Bamberger | 2010-12-16 20:21:20 -0500 (Thu, 16 Dec 2010) | 2 lines

Changed testall to fix problem with .m versus \.m (in regex)

--

r89 | Fredmaster2 | 2010-12-16 20:16:29 -0500 (Thu, 16 Dec 2010) | 3 lines

Added lots of tests, and several new test cases

Added new TODO list in main src directory

--

r88 | Akiva.Bamberger | 2010-12-16 20:10:01 -0500 (Thu, 16 Dec 2010) | 4 lines

Added comments to the code, as well as an output file for

test-recursion.

--

r87 | Akiva.Bamberger | 2010-12-16 18:18:59 -0500 (Thu, 16 Dec 2010) | 18 lines

Added a script to let people make midi files out of .m files, like gcc.

The syntax is as follows:

./midilcc tests/test.m /music/song

This will create /music/song.midi and /music/song.wav.

Alternatively, someone can type

./midilcc tests/test.m

and it will create tests/test.midi and tests/test.wav.

38 CHAPTER 4. PROJECT PLAN

-- Akiva

--

r86 | Akiva.Bamberger | 2010-12-16 18:11:24 -0500 (Thu, 16 Dec 2010) | 5 lines

Added tests for recursion and added comments for break/continue.

Allowed using types in declarations.

--

r85 | Fredmaster2 | 2010-12-16 12:17:36 -0500 (Thu, 16 Dec 2010) | 3 lines

Added number-based instrument_set and tempo_set assembler implementations (instrument lookup check not yet added).

Added set_instrument and set_tempo tests

--

r84 | Akiva.Bamberger | 2010-12-16 03:16:22 -0500 (Thu, 16 Dec 2010) | 6 lines

Added break and continue.

Please look at these changes. Some things have been added to the code

to allow for breaks and continues to work as intended.

--

r83 | Fredmaster2 | 2010-12-15 17:35:50 -0500 (Wed, 15 Dec 2010) | 3 lines

Changed set_tempo to add tempo_marker, and added set_instrument function (currently uses instrument number, need to add string to stack?)

These functions work, and pass tests, but the version of the assembler that supports them hasn’t been committed yet

--

r82 | 8enmann@gmail.com | 2010-12-15 03:43:01 -0500 (Wed, 15 Dec 2010) | 4 lines

Oops, realized I wasn’t seeding the random generator.

Now the test SHOULD fail every time. Teehee.

--

r81 | 8enmann@gmail.com | 2010-12-15 03:40:14 -0500 (Wed, 15 Dec 2010) | 5 lines

Added rand(max) which returns an integer from 0 to max.

For some reason the test file has random notes but they come out the same

4.6. PROJECT LOG 39

every time, even across compilation. At least it’s testable!

--

r80 | 8enmann@gmail.com | 2010-12-15 03:13:27 -0500 (Wed, 15 Dec 2010) | 4 lines

Modified makefile so you can just type "make test" to run all the tests.

Also edited the test.sh script to make the gold standard of the correct filename format.

Added a missing gold standard for for4.

--

r79 | 8enmann@gmail.com | 2010-12-15 03:00:21 -0500 (Wed, 15 Dec 2010) | 2 lines

added support for direct selection as lvalue and tests

--

r78 | Akiva.Bamberger | 2010-12-15 02:34:28 -0500 (Wed, 15 Dec 2010) | 2 lines

Made changes to fix earlier submission. Added a test.

--

r77 | 8enmann@gmail.com | 2010-12-15 02:32:18 -0500 (Wed, 15 Dec 2010) | 2 lines

restored pristine example files

--

r76 | Akiva.Bamberger | 2010-12-15 01:39:23 -0500 (Wed, 15 Dec 2010) | 8 lines

This one’s a killa.

1) Chords can now be created using the call new_chord

and can take variable number of args

2) You can now print a Chord directly

3) I really refrained from making the log just a goofy header

4) We can use what I did for new_chord on any future functions we want

that take variable length args!

--

r75 | 8enmann@gmail.com | 2010-12-15 00:39:20 -0500 (Wed, 15 Dec 2010) | 3 lines

Added fancy tests to TODO

--

r74 | Fredmaster2 | 2010-12-14 22:07:17 -0500 (Tue, 14 Dec 2010) | 1 line

40 CHAPTER 4. PROJECT PLAN

Added test-attribute gold standard and changed test.sh to not remove csv file (to make it easier to produce gold standards).

--

r73 | Fredmaster2 | 2010-12-14 21:56:47 -0500 (Tue, 14 Dec 2010) | 1 line

Added gold standard output, removed interpret test from testall.sh, and wrote sequence test

--

r72 | 8enmann@gmail.com | 2010-12-14 21:37:50 -0500 (Tue, 14 Dec 2010) | 2 lines

Added tests for attribute assignment, updated parser to resolve shift reduce conflict.

--

r71 | 8enmann@gmail.com | 2010-12-14 20:01:08 -0500 (Tue, 14 Dec 2010) | 2 lines

Added support for attribute selection

--

r70 | 8enmann@gmail.com | 2010-12-14 18:01:57 -0500 (Tue, 14 Dec 2010) | 2 lines

Syntax for l-value selection implemented... committing before implementing executor code.

--

r69 | 8enmann@gmail.com | 2010-12-14 16:25:55 -0500 (Tue, 14 Dec 2010) | 4 lines

Implemented mod operator.

Cleaned up built-in function declaration in compiler.

--

r68 | 8enmann@gmail.com | 2010-12-14 15:41:00 -0500 (Tue, 14 Dec 2010) | 4 lines

Deleted java files since they’ve been moved to /components.

Added test script and executable jar file.

--

r67 | 8enmann@gmail.com | 2010-12-14 15:22:19 -0500 (Tue, 14 Dec 2010) | 2 lines

New tests added

--

r66 | 8enmann@gmail.com | 2010-12-14 15:21:35 -0500 (Tue, 14 Dec 2010) | 2 lines

Moved java files, compiled, and made a manifest file

--

4.6. PROJECT LOG 41

r65 | Akiva.Bamberger | 2010-12-14 02:11:41 -0500 (Tue, 14 Dec 2010) | 2 lines

Implemented print_sequence

Changed the string_of_list and string_of_list_list to only take one arg

--

r64 | Akiva.Bamberger | 2010-12-14 01:13:50 -0500 (Tue, 14 Dec 2010) | 2 lines

Added print_sequence

--

r63 | 8enmann@gmail.com | 2010-12-13 15:42:50 -0500 (Mon, 13 Dec 2010) | 5 lines

Added support for adding chords to sequences.

Fixed tests to use new_sequence constructor.

Fixed new_sequence constructor.

--

r62 | 8enmann@gmail.com | 2010-12-13 15:19:48 -0500 (Mon, 13 Dec 2010) | 3 lines

updated TODO

--

r61 | 8enmann@gmail.com | 2010-12-13 14:58:52 -0500 (Mon, 13 Dec 2010) | 4 lines

Added sequence constructor function as a built-in.

Fixed sequence addition.

--

r60 | 8enmann@gmail.com | 2010-12-13 12:34:45 -0500 (Mon, 13 Dec 2010) | 2 lines

Oops, forgot that chord start times have to be updated. Added a TODO.

--

r59 | 8enmann@gmail.com | 2010-12-13 12:32:13 -0500 (Mon, 13 Dec 2010) | 3 lines

Added support for adding sequences together.

--

42 CHAPTER 4. PROJECT PLAN

r58 | 8enmann@gmail.com | 2010-12-12 21:44:07 -0500 (Sun, 12 Dec 2010) | 3 lines

GREAT SUCCESS. pipeline complete.

had to fix an infinite loop I accidentally created in handling Rts

--

r57 | Akiva.Bamberger | 2010-12-12 21:15:11 -0500 (Sun, 12 Dec 2010) | 2 lines

Added some things!

--

r56 | 8enmann@gmail.com | 2010-12-12 20:48:48 -0500 (Sun, 12 Dec 2010) | 2 lines

cleaned up formatting, killed some pointless code

--

r55 | 8enmann@gmail.com | 2010-12-12 18:41:10 -0500 (Sun, 12 Dec 2010) | 2 lines

Killed java directory. Relevant java files should be placed in the src folder.

--

r54 | 8enmann@gmail.com | 2010-12-12 18:37:46 -0500 (Sun, 12 Dec 2010) | 3 lines

Added LRM for reference, modified a comment in compiler.

--

r53 | 8enmann@gmail.com | 2010-12-12 18:34:44 -0500 (Sun, 12 Dec 2010) | 4 lines

Implemented a lot of stuff in the executor and made the

comments in bytecode.ml better.

--

r52 | Akiva.Bamberger | 2010-12-12 14:43:14 -0500 (Sun, 12 Dec 2010) | 3 lines

To get simple tests to work again...

--

r51 | 8enmann@gmail.com | 2010-12-12 13:53:52 -0500 (Sun, 12 Dec 2010) | 2 lines

Everything compiles

--

4.6. PROJECT LOG 43

r50 | 8enmann@gmail.com | 2010-12-12 02:26:48 -0500 (Sun, 12 Dec 2010) | 3 lines

Revamped everything.

Still have to add some cases to the pattern match in execute to make it compile.

--

r49 | 8enmann@gmail.com | 2010-12-11 20:45:34 -0500 (Sat, 11 Dec 2010) | 3 lines

Everything compiles. Do not commit if you can’t run make!

--

r48 | Fredmaster2 | 2010-12-11 20:07:47 -0500 (Sat, 11 Dec 2010) | 1 line

--

r47 | 8enmann@gmail.com | 2010-12-11 20:06:28 -0500 (Sat, 11 Dec 2010) | 4 lines

Everything compiles except the toplevel because it needs the executor.

LOTS of things changed, mostly do to with how operators get passed around.

Still a lot to do. Added comments in some of the places. Threw errors for some unimplemented stuff.

--

r46 | 8enmann@gmail.com | 2010-12-11 17:56:35 -0500 (Sat, 11 Dec 2010) | 2 lines

These files were corrupted. Restoring originals.

--

r45 | 8enmann@gmail.com | 2010-12-04 16:33:12 -0500 (Sat, 04 Dec 2010) | 4 lines

Modified bytecode spec to use uniform types. Still need to add type-specific operators.

Added a function to the compiler that converts note literals into tuples with pitch and duration as int * int tuples.

--

r44 | 8enmann@gmail.com | 2010-12-03 16:44:01 -0500 (Fri, 03 Dec 2010) | 2 lines

Deleted interpreter. Not making one.

--

r43 | 8enmann@gmail.com | 2010-12-03 16:43:15 -0500 (Fri, 03 Dec 2010) | 2 lines

Added toplevel for Ye to work on.

--

44 CHAPTER 4. PROJECT PLAN

r42 | Fredmaster2 | 2010-12-03 16:29:37 -0500 (Fri, 03 Dec 2010) | 1 line

Added execute and modified bytecode to add bytecode types.

--

r41 | yeliu2428@gmail.com | 2010-12-03 16:23:13 -0500 (Fri, 03 Dec 2010) | 1 line

Moved assembler stuff.

--

r40 | Akiva.Bamberger | 2010-12-03 16:01:20 -0500 (Fri, 03 Dec 2010) | 4 lines

Updated the parser and ast files.

Good job, friends!

--

r39 | 8enmann@gmail.com | 2010-12-03 15:42:42 -0500 (Fri, 03 Dec 2010) | 3 lines

edited wrong bytecode file before. fixed.

--

r38 | 8enmann@gmail.com | 2010-12-03 15:41:18 -0500 (Fri, 03 Dec 2010) | 2 lines

small edits

--

r37 | yeliu2428@gmail.com | 2010-12-03 15:25:06 -0500 (Fri, 03 Dec 2010) | 1 line

Updated default time resolution to 960 ppq.

--

r36 | yeliu2428@gmail.com | 2010-12-03 15:06:22 -0500 (Fri, 03 Dec 2010) | 1 line

Added CSV2MIDI2.java, which is modified from the CSV2MIDI directory to match our needs.

--

r35 | 8enmann@gmail.com | 2010-12-03 13:58:24 -0500 (Fri, 03 Dec 2010) | 2 lines

moved type defs

--

r34 | Fredmaster2 | 2010-12-03 13:57:27 -0500 (Fri, 03 Dec 2010) | 1 line

Fixed dot and bracket s/r error

--

r33 | Akiva.Bamberger | 2010-12-03 13:45:51 -0500 (Fri, 03 Dec 2010) | 2 lines

4.6. PROJECT LOG 45

Small changes made

--

r32 | Fredmaster2 | 2010-12-03 13:45:06 -0500 (Fri, 03 Dec 2010) | 1 line

Added brackets and dot to parser

--

r31 | 8enmann@gmail.com | 2010-12-03 13:44:02 -0500 (Fri, 03 Dec 2010) | 2 lines

small modifications to compiler and added microc interpreter

--

r30 | Akiva.Bamberger | 2010-12-03 13:43:45 -0500 (Fri, 03 Dec 2010) | 2 lines

Did it

--

r29 | 8enmann@gmail.com | 2010-12-03 13:33:06 -0500 (Fri, 03 Dec 2010) | 2 lines

Deleted repository testing files

--

r28 | Akiva.Bamberger | 2010-12-03 13:22:16 -0500 (Fri, 03 Dec 2010) | 5 lines

Adding, my BFFs!

This Abstract Syntax Tree takes care of most things.

--

r27 | 8enmann@gmail.com | 2010-12-03 13:18:43 -0500 (Fri, 03 Dec 2010) | 2 lines

Relevant parts should be modified as necessary and moved to /src

--

r26 | Fredmaster2 | 2010-12-03 13:14:56 -0500 (Fri, 03 Dec 2010) | 1 line

Updated parser with types

--

r25 | 8enmann@gmail.com | 2010-12-03 12:59:42 -0500 (Fri, 03 Dec 2010) | 4 lines

Added some necessary files, modified slightly from their MICROC originals. Note the TODO file in tests, which contains a list of tests that need to be written as they are supported.

Tests can’t be written until the whole pipeline up to the interpreter is somewhat complete.

46 CHAPTER 4. PROJECT PLAN

--

r24 | Akiva.Bamberger | 2010-12-03 12:48:38 -0500 (Fri, 03 Dec 2010) | 2 lines

Changed the way types are dealt with

--

r23 | Fredmaster2 | 2010-12-03 11:44:05 -0500 (Fri, 03 Dec 2010) | 1 line

Added location change for parser.mly

--

r22 | Akiva.Bamberger | 2010-12-03 11:30:58 -0500 (Fri, 03 Dec 2010) | 2 lines

Adding for Fred

--

r21 | Fredmaster2 | 2010-12-01 20:55:12 -0500 (Wed, 01 Dec 2010) | 1 line

Worked on parser.mly, some changes need to be made to scanner for further work.

--

r20 | Akiva.Bamberger | 2010-11-23 23:53:01 -0500 (Tue, 23 Nov 2010) | 2 lines

Adding to src (sorry, edited first in microc file)

--

r19 | Akiva.Bamberger | 2010-11-23 23:19:11 -0500 (Tue, 23 Nov 2010) | 1 line

--

r18 | Akiva.Bamberger | 2010-11-23 23:18:38 -0500 (Tue, 23 Nov 2010) | 1 line

--

r17 | Akiva.Bamberger | 2010-11-23 23:17:43 -0500 (Tue, 23 Nov 2010) | 2 lines

First set of changes

--

r16 | yeliu2428@gmail.com | 2010-11-20 18:35:49 -0500 (Sat, 20 Nov 2010) | 1 line

removed testing file from /src

--

r15 | Fredmaster2 | 2010-11-14 14:47:08 -0500 (Sun, 14 Nov 2010) | 1 line

Added sample final report and milestones (current as of 11/14)

--

4.6. PROJECT LOG 47

r14 | Fredmaster2 | 2010-11-14 13:52:59 -0500 (Sun, 14 Nov 2010) | 1 line

Added the microc stuff

--

r13 | Akiva.Bamberger | 2010-10-03 15:19:39 -0400 (Sun, 03 Oct 2010) | 1 line

What’s up BAMF lovers

--

r12 | Akiva.Bamberger | 2010-10-03 15:17:11 -0400 (Sun, 03 Oct 2010) | 1 line

Initial import.

--

r11 | 8enmann@gmail.com | 2010-10-03 15:04:22 -0400 (Sun, 03 Oct 2010) | 1 line

asdf

--

r10 | 8enmann@gmail.com | 2010-10-03 15:03:19 -0400 (Sun, 03 Oct 2010) | 2 lines

test

--

r9 | 8enmann@gmail.com | 2010-10-03 15:01:27 -0400 (Sun, 03 Oct 2010) | 1 line

testing more

--

r8 | 8enmann@gmail.com | 2010-10-03 14:59:15 -0400 (Sun, 03 Oct 2010) | 1 line

testing

--

r7 | yeliu2428@gmail.com | 2010-10-03 14:58:30 -0400 (Sun, 03 Oct 2010) | 1 line

testing

--

r3 | Akiva.Bamberger | 2010-10-03 14:22:47 -0400 (Sun, 03 Oct 2010) | 2 lines

Adding a file for source files...

--

r2 | Akiva.Bamberger | 2010-10-03 14:06:58 -0400 (Sun, 03 Oct 2010) | 2 lines

Added the proposal

--

r1 | (no author) | 2010-10-03 14:01:58 -0400 (Sun, 03 Oct 2010) | 1 line

48 CHAPTER 4. PROJECT PLAN

Initial directory structure.

--

Chapter 5

Architecture & Design

5.1 Block Diagram

49

50 CHAPTER 5. ARCHITECTURE & DESIGN

5.2 Interface between components

The input is a .m file written according to the LRM and the block diagram shown in the above
figure. The input file is converted into tokens by the scanner/lexer, parsed into an abstract
syntax tree, compiled into bytecode, and is further compiled into a CSV by the bytecode
interpreter. Finally, the CSV file is assembled into a MIDI file by the Java-based assembler,
which can then be played on any standard media player. The two outputs generated by
each .m source file is a .csv file containing CSV information, and a .midi file to be played.
All components are written in OCAML except for the assembler, which is written in Java.
The parser is generated by OCAMLYACC. The media player is not included here and can
be written in any language.

The MIDILC language logically consists of a lexer, parser, bytecode compiler, and as-
sembler. As the lexer reads in tokens, it invokes the parser. At this point, syntax errors
prevent the compiler from running and output an error. When parsing is finished, the byte-
code compiler is invoked, which generates a series of human-readable CSV bytecodes, which
mimic the MIDI structure. It is at this point that runtime errors (such as granularity issues
or bounds check violation) are generated. Finally, the assembler is run on the CSV to output
a type Standard MIDI File.

5.3 Who Implemented What

Fred, Akiva, and Ben: Lexer, Parser, Bytecode, Executor, Compiler
Fred and Ye: Assembler
View the section on Project Log for more details.

Chapter 6

Test Plan

6.1 Representative Source

6.1.1 For Loop

Source Code

/** Adds many notes to a sequence using a simple for loop */

main() {

Note a;

Sequence b;

Number i;

b = new_sequence();

a = Aq;

for (i = 0 ; i < 12 ; i = i + 1) {

b = b + a;

b = b + ((a as Chord) + (a .+ i));

}

play(b);

}

Bytecode

0 global variables

0 Jsr 2

1 Hlt

2 Ent 3

3 Jsr -3

4 Sfp 2

5 Drp

6 Not (69,4)

7 Sfp 1

8 Drp

9 Num 0

51

52 CHAPTER 6. TEST PLAN

10 Sfp 3

11 Drp

12 Sjp (15,23,0)

13 Bra 21

14 Lfp 2

15 Lfp 1

16 Add

17 Sfp 2

18 Drp

19 Lfp 2

20 Lfp 1

21 Cst Chord

22 Lfp 1

23 Lfp 3

24 Dad

25 Add

26 Add

27 Sfp 2

28 Drp

29 Lfp 3

30 Num 1

31 Add

32 Sfp 3

33 Drp

34 Lfp 3

35 Num 12

36 Lt

37 Bne -23

38 Sjp (0,0,3)

39 Lfp 2

40 Jsr -1

41 Drp

42 Num 0

43 Rts 0

CSV

0,4,69

4,4,69

4,4,69

8,4,69

12,4,69

12,4,70

16,4,69

20,4,69

6.1. REPRESENTATIVE SOURCE 53

20,4,71

24,4,69

28,4,69

28,4,72

32,4,69

36,4,69

36,4,73

40,4,69

44,4,69

44,4,74

48,4,69

52,4,69

52,4,75

56,4,69

60,4,69

60,4,76

64,4,69

68,4,69

68,4,77

72,4,69

76,4,69

76,4,78

80,4,69

84,4,69

84,4,79

88,4,69

92,4,69

92,4,80

6.1.2 Set Instrument

Source code

/** Sets instrument of .MIDI */

main() {

Note a;

Sequence b;

Chord c;

b = new_sequence();

a = A3q;

a = (a as Chord) + C3q + Eb3q;

b = b + a + a + a;

set_instrument("Piano");

play(b);

}

54 CHAPTER 6. TEST PLAN

Bytecode

0 global variables

0 Jsr 2

1 Hlt

2 Ent 3

3 Jsr -3

4 Sfp 2

5 Drp

6 Not (57,4)

7 Sfp 1

8 Drp

9 Lfp 1

10 Cst Chord

11 Not (48,4)

12 Add

13 Not (51,4)

14 Add

15 Sfp 1

16 Drp

17 Lfp 2

18 Lfp 1

19 Add

20 Lfp 1

21 Add

22 Lfp 1

23 Add

24 Sfp 2

25 Drp

26 Stn Piano

27 Jsr -6

28 Drp

29 Lfp 2

30 Jsr -1

31 Drp

32 Num 0

33 Rts 0

CSV

0,4,57

0,4,48

0,4,51

4,4,57

4,4,48

6.1. REPRESENTATIVE SOURCE 55

4,4,51

8,4,57

8,4,48

8,4,51

6.1.3 Arpeggiate

Source Code

/** Demonstrates how a function declarations and calls work*/

main(){

Note a;

Chord c;

Sequence s;

Number i;

c = new_chord(C,E,G);

s = arpeggiate(c);

play(s);

}

arpeggiate(c)

{

Number n;

Number i;

Sequence s;

s = new_sequence();

n = c.length;

for(i = 0; i < n; i=i+1)

{

s = s + c[i];

}

return s;

}

Bytecode

0 global variables

0 Jsr 36

1 Hlt

2 Ent 3

3 Jsr -3

4 Sfp 3

5 Drp

6 Lfp -2

56 CHAPTER 6. TEST PLAN

7 Mem length

8 Sfp 1

9 Drp

10 Num 0

11 Sfp 2

12 Drp

13 Sjp (7,15,0)

14 Bra 13

15 Lfp 3

16 Lfp 2

17 Lfp -2

18 Ele

19 Add

20 Sfp 3

21 Drp

22 Lfp 2

23 Num 1

24 Add

25 Sfp 2

26 Drp

27 Lfp 2

28 Lfp 1

29 Lt

30 Bne -15

31 Sjp (0,0,3)

32 Lfp 3

33 Rts 1

34 Num 0

35 Rts 1

36 Ent 4

37 Not (67,4)

38 Not (64,4)

39 Not (60,4)

40 Num 3

41 Jsr -4

42 Sfp 2

43 Drp

44 Lfp 2

45 Jsr 2

46 Sfp 3

47 Drp

48 Lfp 3

49 Jsr -1

50 Drp

51 Num 0

6.2. TESTING AUTOMATION 57

52 Rts 0

CSV

0,4,60

4,4,64

8,4,67

6.2 Testing automation

We chose our test cases starting from the most basic, and gradually increased the complexity
of them to test. We initially chose test cases by selecting the basic features of our language
(the different data types, basic control features, and built-in functions), and ensuring that
they work as expected. These tests are very simple scripts that include the different ways
these language features can be used. For example, we tested the different ways of assigning
and modifying Note, Chord, and Sequence types. Test cases that represent previous problem
areas, such as the set_tempo() function, were chosen next to ensure that these problems
have been dealt with. The next step was to add cases to test all the different ways of
modifying data, including use of multiple functions, the dot operator, and the subscript
operator. Some other tests included simple library functions, such as scale generators and
major/minor chord generators. Finally, for completeness, we wrote more complex functions
to represent different ways the language would actually be used, including tests that produce
full songs and generate harmonies based on melodies.

An automated test suite, based off of the MICROC test suite, was used for regression
testing and ensuring that all language features work as expected. Since our language doesnt
include an interpreter, the interpreter aspect in the MICROC test suite was removed from
our test suite. Because our assembler was infrequently modified after the initial implemen-
tation, and due to the complexity of assembling each CSV output file, the testing framework
compares against the intermediate CSV files instead of the final MIDI output. Our testing
involved running the testall.sh shell script to compare output from each of the tests in the
suite, which reports the status for each teset run with either OK or NO (did not pass), before
committing any changes. We did not use a code coverage tool, but instead hand-selected
cases that include all aspects of the language, as we believe that this is more well-suited for
our language.

Each person performed tests on their own parts of the language. The tests for the features
of the complete language, as well as the library functions, were divided among the group.
Here is a list of what each member implemented.

Ben:

test-add.m

test-chord.m

test-direct1.m

test-divide.m

test-dvorak.m

test-for2.m

58 CHAPTER 6. TEST PLAN

test-for3.m

test-note.m

test-rand.m

test-subscript.m

Fred:

test-arpeggio.m

test-casts.m

test-chromatic.m

test-chromatic-subscript.m

test-direct.m

test-equality.m

test-gen-harmony.m

test-global.m

test-major.m

test-instrument.m

test-minor.m

test-shift.m

test-melody.m

test-numerical-inequality.m

test-sub.m

test-play-chord.m

test-play-note.m

test-sequence.m

test-tempo.m

Akiva:

pi-symphony.m

test-for1.m

test-for4.m

test-for5.m

test-recursion.m

test-stairway.m

Ye:

test-harmonicminor.m

test-inequality.m

test-majorscale.m

test-melodicminor.m

test-multiply.m

test-naturalminor.m

Chapter 7

Lessons Learned

7.1 Most Important Lessons

7.1.1 Akiva Bamberger

Flexibility was a big plus working on this team project. The initial implementation was
ultimately scrapped for a more dynamic system. The libraries used for transcribing CSV to
MIDI required integration of Java code. In addition to the changes in design along the way,
there were many different level of abstractions being worked on at the same time. Working
on break/continue required not only a change to the way while loops were used, but also
how for loops were encountered.

I also learned that working with a team could be fun albeit competitive when building
a new language. I enjoyed working with the code and building modules to improve the
work of my teammates. I also liked the competitive nature with which we wrote tests (e.g.
to demonstrate the static scoping and applicative order of the language) and transcribed
popular music (like Stairway of Heaven) to MIDILC.

I also enjoyed using simple text editors rather than complicated IDEs for development.
Using Emacs rather than bash for testing O’Caml code was very important as well. The
use of an SVN repository for development was great, except for issues with merges. In the
future, I would prefer to work with a Git repository, I think.

7.1.2 Ben Mann

More so than in other class projects, the scale of the task of creating a language required
a solid understanding of the concepts taught in the PLT course. At first glance, it was
not at all clear how to implement the features we wanted to include. Taking the time to
fully understand the example code provided (the MicroC language) helped me to make fast
progress when I finally began implementation. Then, once understanding was complete,
delegating remaining tasks to the team members was much easier. At first, I spent too much
time explaining what I had figured out. I learned to give pointers to relevant references,
such as websites or code in the repository instead of taking time that I could be spending
building out more features and demos.

59

60 CHAPTER 7. LESSONS LEARNED

I also learned that it is often easier simply to start working than to argue about the best
way for something to be done. Frequently, we were on the verge of getting bogged down
in details, but when I started actually writing the code, implementation details worked
themselves out, often thanks to the O’Caml compiler.

Lastly, I learned that the command line is often much easier to work with than an IDE.
Trying to get Eclipse running on all of the team members’ machines proved more time
consuming than it was worth. Simple text editors and the Linux shell provided all of the
power and flexibility required. Having a source repository with version control, a mailing list
that automatically updated with repository changes, an automated test suite, and Google
Docs for real time collaboration made working with the team and keeping track of everyone’s
progress much easier. These are features I had grown accustomed to in the corporate world
and knew they would significantly contribute to the team’s success.

7.1.3 Fred Lowenthal

My team took quite some time to truly get started, and by then, it became difficult to meet
up and for everyone to contribute effectively due to the team members schedules, and I
learned that, workload aside, we should have started earlier to avoid those problems. Also,
we tried working individually, but I found that working as our group was much more effective
and efficient than only making individual contributions.

Since I have a considerable amount of experience with working with MIDI, I didnt expe-
rience many problems with developing the output of our language, apart from doing some
amounts of research, but I didnt realize until later on that some issues could have been
avoided by working with other team members more to make sure that everyones starting on
the same level.

I also learned that, despite our original intention to do so, it doesnt work to separate the
different language components into assignments for different people (i.e. one person works
on the parser, another on the assembler, another on the AST, etc.). This came into play as
a good part of my work on the parser had to be redone for design decisions.

Although I was originally very frustrated with working in OCaml, I learned to appreciate
it more while working on the project, as it lent itself very well to developing a language
(despite the difficulties in often having to figure out the ”OCaml way” of doing things.

I also learned how using a real source control system was crucial to my team’s success;
I had previously worked on a team project using a Google group for source control, which
caused lots of problems and time wasted with resolving concurrency issues and finding things.

7.1.4 Ye Liu

What I have learned from this experience is how hard it is to catch up in a group project of
this scale once you get behind. There will always be lots of work to do, and there will never
be more free time to catch up on what you miss. Being upset that you are behind schedule,
not knowing how to catch up, and being scared of asking for help or clarification will only
make things worse.

I also learned the importance of testing. By testing each component individually and
gradually building up the complexity of our test cases, we were able to solve problems as

7.2. ADVICE FOR FUTURE TEAMS 61

they occur. I was used to writing all the code first and testing as a whole later on, but
the process was always tedious, even for fairly small projects. For a project of this size,
incremental testing made it clearer to see where errors came from, our progress, and also
helped reduce the need to deal with dependencies when a file that others depend on are
found to have errors.

7.2 Advice for Future Teams

Test early and often even with programs in our own language, since they are often harder
to debug than programs in C or Java.

Try to figure out, while still deciding on the language specifications, what will be easier
or more difficult to implement. Some decisions we made didnt necessarily lend themselves
well to simple implementation.

Try to work as a group as much as possible, and to distribute the workload evenly that
way.

SVN log messages, SVN update emails, and TODO lists are your friends.

62 CHAPTER 7. LESSONS LEARNED

Chapter 8

Appendix

8.1 ast.ml

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq |

Greater | Geq | Or | And | DotAdd | DotSub| Mod

type expr =

Literal of int

| NoteLiteral of string

| StringLiteral of string

| Cast of string * string

| Id of string

| MemberOp of string * string

| LMemberOp of string * string * expr

| ElementOp of string * expr

| LElementOp of string * expr * expr

| Binop of expr * op * expr

| Assign of string * expr

| Call of string * expr list

| Noexpr

type stmt =

Block of stmt list

| Expr of expr

| Return of expr

| Continue

| Break

| If of expr * stmt * stmt

| For of expr * expr * expr * stmt

| While of expr * stmt * int

type func_decl = {

63

64 CHAPTER 8. APPENDIX

fname : string;

formals : string list;

locals : string list;

body : stmt list;

}

type program = string list * func_decl list

let rec string_of_expr = function

Literal(l) -> string_of_int l

| NoteLiteral(n) -> n

| StringLiteral(s) -> "\"" ^ s ^ "\"";

| Id(s) -> s

| Cast(t, id) -> id ^ " as " ^ t

| ElementOp(s, e1) -> s ^ "[" ^ string_of_expr e1 ^ "]";

| LElementOp(s, e1, e2) -> s ^ "[" ^ string_of_expr e1 ^ "] = " ^ string_of_expr e2

| MemberOp(id, field) -> id ^ "." ^ field

| LMemberOp(id, field, e) -> id ^ "." ^ field ^ " = " ^ string_of_expr e

| Binop(e1, o, e2) ->

string_of_expr e1 ^ " " ^

(match o with

Add -> "+" | Sub -> "-"

| DotAdd -> ".+" | DotSub -> ".-"

| Equal -> "==" | Neq -> "!="

| Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="

| And -> "&&" | Or -> "||" | Mod -> "%" | Mult -> "*" | Div -> "/") ^

" " ^ string_of_expr e2

| Assign(v, e) -> v ^ " = " ^ string_of_expr e

| Call(f, el) ->

f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")"

| Noexpr -> ""

let rec string_of_stmt = function

Block(stmts) ->

"{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

| Expr(expr) -> string_of_expr expr ^ ";\n";

| Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";

| Break -> "break;\n";

| Continue -> "continue;\n";

| If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s

| If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2

| For(e1, e2, e3, s) ->

"for (" ^ string_of_expr e1 ^ " ; " ^ string_of_expr e2 ^ " ; " ^

string_of_expr e3 ^ ") " ^ string_of_stmt s

8.2. BYTECODE.ML 65

| While(e, s, l) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s

let string_of_vdecl id = "Type " ^ id ^ ";\n"

let string_of_fdecl fdecl =

fdecl.fname ^ "(" ^ String.concat ", " fdecl.formals ^ ")\n{\n" ^

String.concat "" (List.map string_of_vdecl fdecl.locals) ^

String.concat "" (List.map string_of_stmt fdecl.body) ^

"}\n"

let string_of_program (vars, funcs) =

String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^

String.concat "\n" (List.map string_of_fdecl funcs)

8.2 bytecode.ml

type bstmt =

Num of int (* Push a literal @author Ben *)

| Cho of int list (* Push a Chord [len; dur; start; p; p; p...] @author Ben *)

| Seq of int list list (* Push a sequence [[cur;len];[cho];[cho]...] @author Ben *)

| Not of (int * int) (* Push a Note (pitch, duration) @author Ben *)

| Stn of string (* Push a string literal @author Fred *)

| Ele (* access an element of a sequence @author Ben *)

| Leo (* Assign to an element of a sequence @author Ben *)

| Sjp of (int * int * int)(* Set/get jump points @author Akiva *)

| Cst of string (* Cast to a different type @author Ben *)

| Mem of string (* access a member of a data type using the field name @author Ben *)

| Lmo of string (* Assign to a member of a data type @author Ben *)

| Drp (* Discard a value *)

| Bin of Ast.op (* Perform arithmetic on top of stack @author Ben *)

| Lod of int (* Fetch global variable *)

| Str of int (* Store global variable *)

| Lfp of int (* Load frame pointer relative *)

| Sfp of int (* Store frame pointer relative *)

| Jsr of int (* Call function by absolute address *)

| Ent of int (* Push FP, FP -> SP, SP += i *)

| Rts of int (* Restore FP, SP, consume formals, push result *)

| Beq of int (* Branch relative if top-of-stack is zero *)

| Bne of int (* Branch relative if top-of-stack is non-zero *)

| Bra of int (* Branch relative *)

| Hlt (* Terminate *)

type prog = {

num_globals : int; (* Number of global variables *)

66 CHAPTER 8. APPENDIX

text : bstmt array; (* Code for all the functions *)

}

(* @author Ben *)

let string_of_list l =

let rec help_string_of_list l s = match l

with [] -> s ^ "]"

| head :: tail -> help_string_of_list tail (s ^ (string_of_int head) ^ ";") in

help_string_of_list l "["

(* @author Ben *)

let string_of_list_list l =

let rec help_string_of_list_list l s = match l

with [] -> s ^ "]"

| head :: tail -> help_string_of_list_list tail

(s ^ (string_of_list head) ^ ";") in help_string_of_list_list l "["

(* @author Akiva *)

let print_sequence m =

let rec help_print_sequence l s = match l

with [] -> s

| head :: tail -> help_print_sequence tail

s^(let b =

(List.fold_left (fun t e->t^"\n"^e) ""

(let i = List.tl head in

let duration = List.hd i in

let k = List.tl i in

let start = List.hd k in

(List.map

(fun pitch -> if pitch > 0 then

(string_of_int start) ^ "," ^

(string_of_int duration) ^ "," ^

(string_of_int pitch) else ""))

(List.tl k))) in

(String.sub b 1 (String.length b - 1)))

^"\n" in

help_print_sequence (List.rev (List.tl m)) ""

(* @author Ben *)

let string_of_stmt = function

Num(i) -> "Num " ^ string_of_int i

| Not(i,j) -> "Not " ^ "(" ^ string_of_int i ^ "," ^

string_of_int j ^ ")"

| Cho(l) -> "Cho " ^ (string_of_list l)

| Seq(s) -> "Seq " ^ (print_sequence s)

8.2. BYTECODE.ML 67

| Stn(s) -> "Stn " ^ s

| Cst(t) -> "Cst " ^ t

| Drp -> "Drp"

| Bin(Ast.Add) -> "Add"

| Bin(Ast.Sub) -> "Sub"

| Bin(Ast.Mult) -> "Mul"

| Bin(Ast.Div) -> "Div"

| Bin(Ast.Mod) -> "Mod"

| Bin(Ast.DotAdd) -> "Dad"

| Bin(Ast.DotSub) -> "Dsu"

| Bin(Ast.Or) -> "Or"

| Bin(Ast.And) -> "And"

| Bin(Ast.Equal) -> "Eql"

| Bin(Ast.Neq) -> "Neq"

| Bin(Ast.Less) -> "Lt"

| Bin(Ast.Leq) -> "Leq"

| Bin(Ast.Greater) -> "Gt"

| Bin(Ast.Geq) -> "Geq"

| Ele -> "Ele"

| Leo -> "Leo"

| Sjp(i,j,k) -> "Sjp (" ^ string_of_int i ^ "," ^

string_of_int j ^ "," ^

string_of_int k ^ ")"

| Mem(s) -> "Mem " ^ s

| Lmo(s) -> "Lmo " ^ s

| Lod(i) -> "Lod " ^ string_of_int i

| Str(i) -> "Str " ^ string_of_int i

| Lfp(i) -> "Lfp " ^ string_of_int i

| Sfp(i) -> "Sfp " ^ string_of_int i

| Jsr(i) -> "Jsr " ^ string_of_int i

| Ent(i) -> "Ent " ^ string_of_int i

| Rts(i) -> "Rts " ^ string_of_int i

| Bne(i) -> "Bne " ^ string_of_int i

| Beq(i) -> "Beq " ^ string_of_int i

| Bra(i) -> "Bra " ^ string_of_int i

| Hlt -> "Hlt"

(* @author Ben *)

let string_of_prog p =

string_of_int p.num_globals ^ " global variables\n" ^

let funca = Array.mapi

(fun i s -> string_of_int i ^ " " ^ string_of_stmt s) p.text

in String.concat "\n" (Array.to_list funca)

68 CHAPTER 8. APPENDIX

8.3 compile.ml

open Ast

open Bytecode

module StringMap = Map.Make(String)

(* Symbol table: Information about all the names in scope *)

type env = {

function_index : int StringMap.t; (* Index for each function *)

global_index : int StringMap.t; (* "Address" for global variables *)

local_index : int StringMap.t; (* FP offset for args, locals *)

}

(* val enum : int -> ’a list -> (int * ’a) list *)

let rec enum stride n = function

[] -> []

| hd::tl -> (n, hd) :: enum stride (n+stride) tl

(* val string_map_pairs StringMap ’a -> (int * ’a) list -> StringMap ’a *)

let string_map_pairs map pairs =

List.fold_left (fun m (i, n) -> StringMap.add n i m) map pairs

(** Note map, used to map from note literals to pitch integers *)

let note_map = StringMap.add "C" 0 StringMap.empty

(* Rest is given value of -500; pitches less than 0 are not printed in the end. @author Ben/Akiva *)

let note_map = StringMap.add "R" (-500) note_map

let note_map = StringMap.add "D" 2 note_map

let note_map = StringMap.add "E" 4 note_map

let note_map = StringMap.add "F" 5 note_map

let note_map = StringMap.add "G" 7 note_map

let note_map = StringMap.add "A" 9 note_map

let note_map = StringMap.add "B" 11 note_map

let note_map = StringMap.add "w" 16 note_map

let note_map = StringMap.add "h" 8 note_map

let note_map = StringMap.add "q" 4 note_map

let note_map = StringMap.add "e" 2 note_map

let note_map = StringMap.add "s" 1 note_map

(** Returns the pitch, duration of a note @author Ben *)

let int_of_note n =

let a = Array.make 4 0 in

a.(0) <- StringMap.find (String.sub n 0 1) note_map;

for i = 1 to (String.length n) - 1 do

(* check for an accidental *)

8.3. COMPILE.ML 69

if n.[i] == ’b’ then a.(0) <- a.(0) - 1;

if n.[i] == ’#’ then a.(0) <- a.(0) + 1;

(* check for an octave *)

if String.contains "0123456789" n.[i] then

(a.(0) <- a.(0) + 12 * ((int_of_char n.[i]) - (int_of_char ’0’) + 1);

a.(2) <- 1); (* mark octave as set *)

(* check for a duration *)

if String.contains "whqes" n.[i] then

(a.(1) <- StringMap.find (String.sub n i 1) note_map;

a.(3) <- 1) (* mark duration as set *)

done;

(* Set default octave *)

if a.(2) == 0 then a.(0) <- a.(0) + 12 * 5;

(* Set default duration *)

if a.(3) == 0 then a.(1) <- 4;

(*return*)

(a.(0), a.(1))

(** Translate a program in AST form into a bytecode program. Throw an

exception if something is wrong, e.g., a reference to an unknown

variable or function *)

let translate (globals, functions) =

(* Allocate "addresses" for each global variable *)

let global_indexes = string_map_pairs StringMap.empty (enum 1 0 globals) in

(** Assign indexes to function names; built-in "play" and "set_tempo" are special *)

(* Built in functions play (to play a sequence), set tempo, constructors for Sequence and Chord

rand, and set_instrument *)

let built_in_functions = StringMap.add "play" (-1) StringMap.empty in

let built_in_functions = StringMap.add "set_tempo" (-2) built_in_functions in

let built_in_functions = StringMap.add "new_sequence" (-3) built_in_functions in

let built_in_functions = StringMap.add "new_chord" (-4) built_in_functions in

let built_in_functions = StringMap.add "rand" (-5) built_in_functions in

let built_in_functions = StringMap.add "set_instrument" (-6) built_in_functions in

let function_indexes = string_map_pairs built_in_functions

(enum 1 1 (List.map (fun f -> f.fname) functions)) in

(* Translate a function in AST form into a list of bytecode statements *)

let translate env fdecl =

(* Bookkeeping: FP offsets for locals and arguments *)

let num_formals = List.length fdecl.formals

and num_locals = List.length fdecl.locals

and local_offsets = enum 1 1 fdecl.locals

70 CHAPTER 8. APPENDIX

and formal_offsets = enum (-1) (-2) fdecl.formals in

let env = { env with local_index = string_map_pairs

StringMap.empty (local_offsets @ formal_offsets) } in

let rec expr = function

Literal i -> [Num i]

| NoteLiteral n -> [Not (int_of_note n)]

| StringLiteral s -> [Stn s]

| Id s ->

(try [Lfp (StringMap.find s env.local_index)]

with Not_found -> try [Lod (StringMap.find s env.global_index)]

with Not_found -> raise (Failure ("undeclared variable " ^ s)))

| Cast (t, s) -> expr (Id(s)) @ [Cst t]

(* probably need to do type checking here *)

| Binop (e1, op, e2) -> expr e1 @ expr e2 @ [Bin op]

(* check that expr is of type Number *)

| ElementOp (s, e) -> expr e @ expr (Id(s)) @ [Ele]

| LElementOp (s, e1, e2) -> expr e2 @ expr e1 @ expr (Id(s)) @ [Leo] @

(try [Sfp (StringMap.find s env.local_index)]

with Not_found -> try [Str (StringMap.find s env.global_index)]

with Not_found -> raise (Failure ("undeclared variable " ^ s)))

| MemberOp (s, field) -> expr (Id(s)) @ [Mem field]

| LMemberOp (s, field, e) -> expr e @ expr (Id(s)) @ [Lmo field] @

(try [Sfp (StringMap.find s env.local_index)]

with Not_found -> try [Str (StringMap.find s env.global_index)]

with Not_found -> raise (Failure ("undeclared variable " ^ s)))

| Assign (s, e) -> expr e @

(try [Sfp (StringMap.find s env.local_index)]

with Not_found -> try [Str (StringMap.find s env.global_index)]

with Not_found -> raise (Failure ("undeclared variable " ^ s)))

| Call (fname, actuals) -> (try

(List.concat (List.map expr (List.rev (if fname="new_chord"

then [Literal (List.length actuals)] @

actuals else actuals)))) @

[Jsr (StringMap.find fname env.function_index)]

with Not_found -> raise (Failure ("undefined function " ^ fname)))

| Noexpr -> []

in let rec stmt = function

Block sl -> List.concat (List.map stmt sl)

| Expr e -> expr e @ [Drp]

| Return e -> expr e @ [Rts num_formals]

(* Break and Continue use Sjp command. 1 for break, 2 for continue*)

| Break -> [Sjp(0,0,1)]

| Continue -> [Sjp(0,0,2)];

8.4. EXECUTE.ML 71

| If (p, t, f) -> let t’ = stmt t and f’ = stmt f in

expr p @ [Beq(2 + List.length t’)] @

t’ @ [Bra(1 + List.length f’)] @ f’

| For (e1, e2, e3, b) ->

stmt (Block([Expr(e1); While(e2, Block([b; Expr(e3)]), List.length (stmt b))]))

| While (e, b,l) ->

let b’ = stmt b and e’ = expr e in

[Sjp((if l<0 then List.length b’ else l), List.length b’ + List.length e’, 0)]

@ [Bra (1+ List.length b’)] @ b’ @ e’ @

[Bne (-(List.length b’ + List.length e’))] @ [Sjp(0,0,3)]

in [Ent num_locals] @ (* Entry: allocate space for locals *)

stmt (Block fdecl.body) @ (* Body *)

[Num 0; Rts num_formals] (* Default = return 0 *)

in let env = { function_index = function_indexes;

global_index = global_indexes;

local_index = StringMap.empty } in

(* Code executed to start the program: Jsr main; halt *)

let entry_function = try

[Jsr (StringMap.find "main" function_indexes); Hlt]

with Not_found -> raise (Failure ("no \"main\" function"))

in

(* Compile the functions *)

let func_bodies = entry_function :: List.map (translate env) functions in

(* Calculate function entry points by adding their lengths *)

let (fun_offset_list, _) = List.fold_left

(fun (l,i) f -> (i :: l, (i + List.length f))) ([],0) func_bodies in

let func_offset = Array.of_list (List.rev fun_offset_list) in

{ num_globals = List.length globals;

(* Concatenate the compiled functions and replace the function

indexes in Jsr statements with PC values *)

text = Array.of_list (List.map (function

Jsr i when i > 0 -> Jsr func_offset.(i)

| _ as s -> s) (List.concat func_bodies))

}

8.4 execute.ml

open Ast

72 CHAPTER 8. APPENDIX

open Bytecode

(* Stack layout just after "Ent":

<-- SP

Local n

...

Local 0

Saved FP <-- FP

Saved PC

Arg 0

...

Arg n *)

(* Increase the start time of each chord in the sequence by shift @author Ben *)

let shift_chords chord_list shift =

let shift_chord chord =

[(List.hd chord); (List.nth chord 1); (List.nth chord 2) + shift]

@ (List.tl (List.tl (List.tl chord)))

in List.map shift_chord chord_list

(** Replace element of list @author Ben*)

let replace_element l i n skip =

let a = Array.of_list l in

a.(i+skip) <- n; Array.to_list a

let execute_prog prog =

(** Stack, Globals, and Jump variables @author Ben/Akiva*)

let stack = Array.make 1024 (Num(0))

and jumps = Array.make 20 0

and jp = Array.make 1 0

and globals = Array.make prog.num_globals (Num(0)) in

let rec exec fp sp pc = match prog.text.(pc) with

Num i -> stack.(sp) <- (Num(i)) ; exec fp (sp+1) (pc+1)

| Stn s -> stack.(sp) <- (Stn(s)) ; exec fp (sp+1) (pc+1)

(** Member selection @author Ben *)

| Mem s -> stack.(sp-1) <- (match (s, stack.(sp-1)) with

("length", (Cho(len :: _))) -> (Num(len))

| ("start", (Cho(l))) -> (Num(List.nth l 2))

| ("duration", (Cho(l))) -> (Num(List.nth l 1))

| ("pitch" , (Not(p,d))) -> (Num(p))

| ("duration", (Not(p,d))) -> (Num(d))

| ("current", (Seq ([c; l] :: _))) -> (Num(c))

| ("length", (Seq ([c; l] :: _))) -> (Num(l))

8.4. EXECUTE.ML 73

| _ -> raise (Failure ("illegal selection attribute"))) ; exec fp sp (pc+1)

(** Casting (Num -> Number, Num -> Not, Not -> Chord, 0->Seq, Cho->Seq)

@author Ben*)

| Cst s -> stack.(sp-1) <- (match (s, stack.(sp-1)) with

("Number", (Num i))-> (Num(i))

| ("Note", (Num i)) -> (Not(i,4))

| ("Chord", (Not(p,d))) -> (Cho([1;d;0;p]))

| ("Sequence", (Num 0)) -> (Seq([[0;0]]))

| ("Sequence", (Cho(l))) -> (Seq([[(List.nth l 1); 1]; l]))

| _ -> raise (Failure ("illegal type cast"))) ; exec fp sp (pc+1)

(** Creating types (Not, Cho, Seq) @author Ben*)

| Not (p, d) -> stack.(sp) <- (Not(p,d)) ; exec fp (sp+1) (pc+1)

| Cho (l) -> stack.(sp) <- (Cho(l)) ; exec fp (sp+1) (pc+1)

| Seq (ll) -> stack.(sp) <- (Seq(ll)) ; exec fp (sp+1) (pc+1)

(** Element Of @author Ben*)

| Ele -> stack.(sp-2) <- (match (stack.(sp-1), stack.(sp-2)) with

(Cho(l), Num(i)) -> (Not((List.nth l (i + 3)), List.nth l 1))

| (Seq(ll), Num(i)) -> (Cho(List.nth ll (i+1)))

| _ -> raise (Failure ("unexpected types for []"))) ; exec fp (sp-1) (pc+1)

(** Left Element Of @author Ben*)

| Leo -> stack.(sp-3) <- (match (stack.(sp-1), stack.(sp-2), stack.(sp-3)) with

(Cho(l), Num(i), Not(p,d)) -> (Cho(replace_element l i p 3))

| (Seq(ll), Num(i), Cho(l)) -> Seq(replace_element ll i l 1)

| _ -> raise (Failure ("assignment to [] failed"))) ; exec fp (sp-2) (pc+1)

(** Left Member Of @author Ben *)

| Lmo (s) -> stack.(sp-2) <- (match (s, stack.(sp-1), stack.(sp-2)) with

("start", (Cho(l)), (Num i)) -> (Cho([(List.hd l); (List.nth l 1); i]

@ (List.tl (List.tl (List.tl l)))))

| ("duration", (Cho(l)), (Num i)) -> (Cho([(List.hd l); i; (List.nth l 2)]

@ (List.tl (List.tl (List.tl l)))))

| ("pitch" , (Not(p,d)), (Num i)) -> (Not(i, d))

| ("duration", (Not(p,d)), (Num i)) -> (Not(p, i))

| ("current", (Seq ([c; l] :: cs)), (Num i)) -> (Seq([i;l] :: cs))

| _ -> raise (Failure ("illegal selection attribute"))) ; exec fp (sp-1) (pc+1)

| Drp -> exec fp (sp-1) (pc+1)

(** Binary operations

Add

Sub (Num - Num)

Mult (Num * Num)

Div (Num / Num)

Mod (Num % Num)

DotAdd (Not .+ Num)

DotSub (Num .- Num)

And (Num && Num)

Or (Num || Num)

74 CHAPTER 8. APPENDIX

Equal (Num == Num)

Not Equal (Num != Num)

Less (Num < Num)

Leq (Num <= Num)

Greater (Num > Num)

Geq (Num >= Num)

@author Ben/Akiva/Fred *)

| Bin op -> let opA = stack.(sp-2) and opB = stack.(sp-1) in

stack.(sp-2) <- (let boolean i = if i then Num(1) else Num(0) in

match op with

Add -> (match (opA, opB) with

(Num op1, Num op2) -> Num(op1 + op2)

| (Not(p,d), Num i) -> Not(p,d+i)

| (Not(p,d), Not(p2,d2)) -> Not(p, d+d2)

| (Cho(l), Not(p,d)) ->Cho(l @ [p])

| ((Seq ([c; l] :: cs)), (Not(p, d))) -> Seq([c+d; l+1] :: cs @ [[1;d;c;p]])

| ((Seq ([c; l] :: cs)), (Cho(chord))) ->

Seq([c+(List.nth chord 1); l+1] :: cs @

[[(List.hd chord); (List.nth chord 1); c] @

(List.tl (List.tl (List.tl chord)))])

| ((Seq ([c1; l1] :: cs1)), (Seq ([c2; l2] :: cs2))) ->

Seq([c1+c2; l1+l2] :: cs1 @ (shift_chords cs2 c1))

| _ -> raise (Failure ("unexpected types for +")))

| Sub -> (match (opA, opB) with

(Num op1, Num op2) -> Num(op1 - op2)

| _ -> raise (Failure ("unexpected types for -")))

| Mult -> (match (opA, opB) with

(Num op1, Num op2) -> Num(op1 * op2)

| _ -> raise (Failure ("unexpected types for -")))

| Div -> (match (opA, opB) with

(Num op1, Num op2) -> Num(op1 / op2)

| _ -> raise (Failure ("unexpected types for -")))

| Mod -> (match (opA, opB) with

(Num op1, Num op2) -> Num(op1 mod op2)

| _ -> raise (Failure ("unexpected types for %")))

| DotAdd -> (match (opA, opB) with

(Not (p, d), Num op2) -> Not(p + op2, d)

(* add pitch of Note to Number @author Ben *)

| _ -> raise (Failure ("unexpected types for .+")))

| DotSub -> (match (opA, opB) with

(Not (p, d), Num op2) -> Not(p - op2, d)

| _ -> raise (Failure ("unexpected types for .-")))

| And -> (match (opA, opB) with

(Num op1, Num op2) -> boolean (op1 != 0 && op2 != 0)

| _ -> raise (Failure ("unexpected types for &&")))

8.4. EXECUTE.ML 75

| Or -> (match (opA, opB) with

(Num op1, Num op2) -> boolean (op1 == 1 || op2 == 1)

| _ -> raise (Failure ("unexpected types for ||")))

| Equal -> (match (opA, opB) with

(Num op1, Num op2) -> boolean (op1 = op2)

| (Not op1, Not op2) -> boolean (op1 = op2)

| (Cho op1, Cho op2) -> boolean (op1 = op2)

| (Seq op1, Seq op2) -> boolean (op1 = op2)

| _ -> raise (Failure ("unexpected types for =")))

| Neq -> (match (opA, opB) with

(Num op1, Num op2) -> boolean (op1 != op2)

| (Not op1, Not op2) -> boolean (op1 <> op2) (* structural inequality *)

| (Cho op1, Cho op2) -> boolean (op1 <> op2)

| (Seq op1, Seq op2) -> boolean (op1 <> op2)

| _ -> raise (Failure ("unexpected types for !=")))

| Less -> (match (opA, opB) with

(Num op1, Num op2) -> boolean (op1 < op2)

| _ -> raise (Failure ("unexpected types for <")))

| Leq -> (match (opA, opB) with

(Num op1, Num op2) -> boolean (op1 <= op2)

| _ -> raise (Failure ("unexpected types for <=")))

| Greater -> (match (opA, opB) with

(Num op1, Num op2) -> boolean (op1 > op2)

| _ -> raise (Failure ("unexpected types for >")))

| Geq -> (match (opA, opB) with

(Num op1, Num op2) -> boolean (op1 >= op2)

| _ -> raise (Failure ("unexpected types for >="))));

exec fp (sp-1) (pc+1)

| Lod i -> stack.(sp) <- globals.(i) ; exec fp (sp+1) (pc+1)

| Str i -> globals.(i) <- stack.(sp-1) ; exec fp sp (pc+1)

| Lfp i -> stack.(sp) <- stack.(fp+i) ; exec fp (sp+1) (pc+1)

| Sfp i -> stack.(fp+i) <- stack.(sp-1) ; exec fp sp (pc+1)

(** Sjp, to set jump points for use by break and continue

@author Akiva*)

| Sjp(start_jump,end_jump,command)

-> if command=0

then (jumps.(jp.(0)) <- pc+start_jump+2;

jumps.(jp.(0)+1) <- pc+3+end_jump;

jp.(0)<-jp.(0)+2;

exec fp sp (pc+1))

else

(if command<=2

then exec fp sp jumps.(jp.(0)-command)

else (jp.(0)<-jp.(0)-2;

exec fp sp (pc+1)));

76 CHAPTER 8. APPENDIX

(** this is the print command. change it to set tempo and play

@author Fred*)

| Jsr(-2) -> (match stack.(sp-1) with Num i -> print_endline ("Tempo,"

^string_of_int i); exec fp sp (pc+1)

| _ -> raise (Failure ("unexpected type for set_tempo")))

(** Play command @author Akiva*)

| Jsr(-1) -> (match stack.(sp-1) with Seq s -> print_endline

(print_sequence s); exec fp sp (pc+1)

| Cho d -> let a = List.hd (List.tl d) in let c =

List.hd (List.tl (List.tl d)) in

ignore(List.map print_endline (List.map

(fun b -> if b > 0

then string_of_int c^","^

string_of_int a^","^

string_of_int b

else "")

(List.tl (List.tl (List.tl d)))));

exec fp sp (pc+1)

|_ -> raise (Failure ("unexpected type for play")))

(** Sequence constructor @author Ben *)

| Jsr(-3) -> stack.(sp) <- (Seq([[0;0]])) ; exec fp (sp+1) (pc+1)

(** Chord constructor @author Akiva *)

| Jsr(-4) -> (match stack.(sp-1) with Num i ->

let rec chord l n m = if n>m then l else (match stack.(sp-n-1)

with Not (pitch,duration) ->

if n=1

then chord [m; duration; 0; pitch] (n+1) m

else chord (l @ [pitch]) (n+1) m

| _ -> raise (Failure "unexpected type for chord"))

in let my_chord = (chord [] 1 i) in

stack.(sp-i-1) <- (Cho(my_chord)) ; exec fp (sp-i) (pc+1)

| _ -> raise (Failure ("unexpected type for chord")))

(** Random number @author Ben *)

| Jsr(-5) -> (match stack.(sp-1) with Num i -> stack.(sp-1)

<- Num(Random.self_init () ; Random.int i); exec fp sp (pc+1)

| _ -> raise (Failure ("unexpected type for rand")))

(** Set instrument @author Fred*)

| Jsr(-6) -> (match stack.(sp-1) with Stn s -> print_endline ("Instrument,"^s);

exec fp sp (pc+1)

| _ -> raise (Failure ("unexpected type for set_instrument")))

| Jsr i -> stack.(sp) <- (Num(pc + 1)) ; exec fp (sp+1) i

| Ent i -> stack.(sp) <- (Num(fp)) ; exec sp (sp+i+1) (pc+1)

| Rts i -> let new_fp = stack.(fp) and new_pc = stack.(fp-1) in

8.5. MIDILC.ML 77

stack.(fp-i-1) <- stack.(sp-1) ; exec

(match new_fp with Num nfp -> nfp

| _ -> raise (Failure ("unexpected types for return")))

(fp-i)

(match new_pc with Num npc -> npc

| _ -> raise (Failure ("unexpected types for return")))

| Beq i -> exec fp (sp-1) (pc + if

(match stack.(sp-1) with Num temp -> temp = 0

| _ -> raise (Failure ("unexpected types for return"))) then i else 1)

| Bne i -> exec fp (sp-1) (pc + if

(match stack.(sp-1) with Num temp -> temp != 0

| _ -> raise (Failure ("unexpected types for return"))) then i else 1)

| Bra i -> exec fp sp (pc+i)

| Hlt -> ()

in exec 0 0 0

8.5 midilc.ml

type action = Ast | Bytecode | Compile

let _ =

let action = if Array.length Sys.argv > 1 then

List.assoc Sys.argv.(1) [("-a", Ast);

("-b", Bytecode);

("-c", Compile)]

else Compile in

let lexbuf = Lexing.from_channel stdin in

let program = Parser.program Scanner.token lexbuf in

match action with

Ast -> let listing = Ast.string_of_program program

in print_string listing

| Bytecode -> let listing =

Bytecode.string_of_prog (Compile.translate program)

in print_endline listing

| Compile -> Execute.execute_prog (Compile.translate program)

8.6 parser.mly

%{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA LBRACKET RBRACKET CAST

78 CHAPTER 8. APPENDIX

%token PLUS MINUS TIMES DIVIDE ASSIGN DOTPLUS DOTMINUS MOD

%token EQ NEQ LT LEQ GT GEQ

%token AND OR DOT AS

%token RETURN IF ELSE FOR WHILE BREAK CONTINUE

%token <int> LITERAL

%token <string> ID

%token <string> SELECT

%token <string> NOTE

%token <string> TYPE

%token <string> STRLIT

%token EOF

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

%left AS

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ

%left MOD

%left TIMES DIVIDE

%left PLUS MINUS DOTPLUS DOTMINUS

%start program

%type <Ast.program> program

%%

program:

/* nothing */ { [], [] }

| program vdecl { ($2 :: fst $1), snd $1 }

| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:

id LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE

{ {

fname = $1;

formals = $3;

locals = List.rev $6;

body = List.rev $7 } }

formals_opt:

/* nothing */ { [] }

| formal_list { List.rev $1 }

8.6. PARSER.MLY 79

id:

TYPE ID { $2 }

| ID { $1}

formal_list:

id { [$1] } /* List pair */

| formal_list COMMA id { $3 :: $1 } /* List pair */

vdecl_list:

/* nothing */ { [] }

| vdecl_list vdecl { $2 :: $1 }

vdecl:

/* INT ID SEMI { $2 } */

TYPE ID SEMI { $2 }

stmt_list:

/* nothing */ { [] }

| stmt_list stmt { $2 :: $1 }

stmt:

expr SEMI { Expr($1) }

| RETURN expr SEMI { Return($2) }

| BREAK SEMI { Break }

| CONTINUE SEMI { Continue }

| LBRACE stmt_list RBRACE { Block(List.rev $2) }

| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

| FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt

{ For($3, $5, $7, $9) }

| WHILE LPAREN expr RPAREN stmt { While($3, $5,-1) }

expr_opt:

/* nothing */ { Noexpr }

| expr { $1 }

expr:

NOTE { NoteLiteral($1) }

| LITERAL { Literal($1) }

| STRLIT { StringLiteral($1) }

| ID { Id($1) }

| ID LBRACKET expr RBRACKET { ElementOp($1, $3) }

| ID DOT SELECT { MemberOp($1, $3) }

80 CHAPTER 8. APPENDIX

| ID AS TYPE { Cast($3, $1) }

| expr DOTPLUS expr { Binop($1, DotAdd, $3) }

| expr DOTMINUS expr { Binop($1, DotSub, $3) }

| expr PLUS expr { Binop($1, Add, $3) }

| expr MINUS expr { Binop($1, Sub, $3) }

| expr TIMES expr { Binop($1, Mult, $3) }

| expr DIVIDE expr { Binop($1, Div, $3) }

| expr MOD expr { Binop($1, Mod, $3) }

| expr EQ expr { Binop($1, Equal, $3) }

| expr NEQ expr { Binop($1, Neq, $3) }

| expr LT expr { Binop($1, Less, $3) }

| expr LEQ expr { Binop($1, Leq, $3) }

| expr GT expr { Binop($1, Greater, $3) }

| expr GEQ expr { Binop($1, Geq, $3) }

| expr AND expr { Binop($1, And, $3) }

| expr OR expr { Binop($1, Or, $3) }

| ID DOT SELECT ASSIGN expr { LMemberOp($1, $3, $5) }

| ID LBRACKET expr RBRACKET ASSIGN expr { LElementOp($1, $3, $6) }

| ID ASSIGN expr { Assign($1, $3) }

| ID LPAREN actuals_opt RPAREN { Call($1, $3) }

| LPAREN expr RPAREN { $2 }

actuals_opt:

/* nothing */ { [] }

| actuals_list { List.rev $1 }

actuals_list:

expr { [$1] }

| actuals_list COMMA expr { $3 :: $1 }

8.7 scanner.mll

{ open Parser }

rule token = parse

[’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Comments *)

| ’(’ { LPAREN }

| ’)’ { RPAREN }

| ’{’ { LBRACE }

| ’}’ { RBRACE }

| ’[’ { LBRACKET }

| ’]’ { RBRACKET }

| ’;’ { SEMI }

8.8. COMPONENTS/CSV2MIDI.JAVA 81

| ’,’ { COMMA }

| ’+’ { PLUS }

| ’-’ { MINUS }

| ’*’ { TIMES }

| ’/’ { DIVIDE }

| ’=’ { ASSIGN }

| "==" { EQ }

| "!=" { NEQ }

| ’<’ { LT }

| "<=" { LEQ }

| ">" { GT }

| ">=" { GEQ }

| "as" { AS }

| "if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "while" { WHILE }

| "continue" { CONTINUE }

| "return" { RETURN }

| "break" { BREAK }

| "&&" { AND }

| "||" { OR }

| ’.’ { DOT }

| ".+" { DOTPLUS }

| ".-" { DOTMINUS }

| "%" { MOD }

| "duration" | "pitch" | "length" | "current" | "start" as s { SELECT(s) }

| "Number" | "Note" | "Chord" | "Sequence" | "Void" as typ { TYPE(typ) }

| [’A’-’G’ ’R’][’b’ ’#’]?[’0’-’9’]?[’w’ ’h’ ’q’ ’e’ ’s’]? as note { NOTE(note) }

| [’0’-’9’]+ as lxm { LITERAL(int_of_string lxm) }

| ’\"’[’0’-’9’ ’A’-’Z’ ’ ’ ’a’-’z’]+’\"’ as stng {

STRLIT(String.sub stng 1 ((String.length stng) - 2)) }

| [’a’-’z’ ’A’-’Z’][’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]* as lxm { ID(lxm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse

"*/" { token lexbuf }

| _ { comment lexbuf }

8.8 components/CSV2MIDI.java

/**

* CSV2MIDI.java

82 CHAPTER 8. APPENDIX

*

* @author: Ye

* Modified from Stephen Steffes: http://www.penguinpeepshow.com/CSV2MIDI.php

* to support language-specific constructs

*

* @author: Fredric

* Modified to change initial instrument, and send tempo meta-event

*

* Converts .csv files to MIDI files using the javax.sound.midi package

*/

import java.io.*;

import javax.sound.midi.*;

import java.lang.*;

public class CSV2MIDI{

public static final byte[] getIntBytes(int input)

{

byte[] retval = new byte[3];

retval[0] = (byte)(input >> 16 & 0xff);

retval[1] = (byte)(input >> 8 & 0xff);

retval[2] = (byte)(input & 0xff);

return retval;

}

public static final String INSTRUMENTFILE = "sorted_instruments.csv";

public static final int MININST = 0;

public static final int MAXINST = 127;

public static void main(String[] args) throws InvalidMidiDataException {

//***** Get Inputs *****

if (args.length != 2)

printUsageAndExit();

File outputFile = new File(args[1]);

Sequence sequence = null;

//Open and save the CSV file

CSV csvFile=new CSV(args[0]);

csvFile.fillVector();

8.8. COMPONENTS/CSV2MIDI.JAVA 83

//instrument and timingRes are default.

int timingRes=4, instrument = 1;

//***** Initialize Sequencer *****

try{

//initialize sequencer with timingRes

sequence = new Sequence(Sequence.PPQ, timingRes);

}catch (InvalidMidiDataException e){

e.printStackTrace();

System.exit(1);

}

//***** Create tracks and notes *****

/* Track objects cannot be created by invoking their constructor

directly. Instead, the Sequence object does the job. So we

obtain the Track there. This links the Track to the Sequence

automatically.

*/

Track track = sequence.createTrack(); //create track

// channel/velocity set to default; note/tick/duration will depend on input.

int channel=0,velocity=90;

int note=0,tick=0,duration=0;

int currentCSVPos = 0;

// instrument

String str = csvFile.data.elementAt(currentCSVPos).toString();

if(str.compareToIgnoreCase("Instrument") == 0)

{

currentCSVPos += 2;

String instrumentName = csvFile.data.elementAt(currentCSVPos).toString();

instrumentName = instrumentName.trim();

try

{

instrument = Integer.parseInt(instrumentName);

// if the instrument is a number, check its range

if(instrument < MININST || instrument > MAXINST)

{

System.out.println("Instrument # " + instrument + "

is not a valid instrument.\nReverting to Piano");

instrument = 1;

}

}

catch(NumberFormatException e)

84 CHAPTER 8. APPENDIX

{

// look up the instrument’s number from the file if it isn’t a number

instrument = InstrumentCheck.checkInstrument(INSTRUMENTFILE,

instrumentName, MININST, MAXINST);

if(instrument == -1)

{

System.out.println("Instrument: " + instrumentName +

" is not a valid instrument.\nReverting to Piano");

instrument = 1;

}

// handle a blank instrument name

if(instrumentName.length() < 1)

currentCSVPos -= 1;

}

finally

{

currentCSVPos += 2;

}

}

else

{

currentCSVPos = 0;

}

ShortMessage sm = new ShortMessage();

sm.setMessage(ShortMessage.PROGRAM_CHANGE,

instrument, 0); //put in instrument in this track

track.add(new MidiEvent(sm, 0));

int oldPos = currentCSVPos;

// tempo

str = csvFile.data.elementAt(currentCSVPos).toString();

if(str.compareToIgnoreCase("Tempo") == 0)

{

currentCSVPos += 2;

int tempo = Integer.parseInt(csvFile.data.elementAt(currentCSVPos).toString().trim());

int MPQN = 60000000 / tempo;

// Microseconds per quarter-note = Microseconds per minute / Beats Per Minute

MetaMessage mm = new MetaMessage();

// MetaEvent: Type = 81, Length = 3

mm.setMessage(81, getIntBytes(MPQN), 3);

track.add(new MidiEvent(mm, 0));

currentCSVPos += 2;

8.8. COMPONENTS/CSV2MIDI.JAVA 85

}

else

{

currentCSVPos = oldPos;

}

//go through each of the following lines and add notes

for(;currentCSVPos<csvFile.data.size();){

//loop through rest of CSV file

try{ //check that the current CSV position is an integer

tick=Integer.parseInt(csvFile.data.

elementAt(currentCSVPos).toString()); //first number is tick

currentCSVPos+=2;

duration=Integer.parseInt(csvFile.data.

elementAt(currentCSVPos).toString()); //second number is duration

currentCSVPos+=2;

note=Integer.parseInt(csvFile.data.

elementAt(currentCSVPos).toString()); //next number is note pitch

currentCSVPos+=2;

//add note to the track

track.add(createNoteOnEvent(note,tick,channel,velocity));

//add a noteOffEvent to terminate this note

track.add(createNoteOffEvent(note,tick+duration,channel));

}catch(NumberFormatException e){

//current CSV position not an integer

currentCSVPos++;

}

}

// Print track information

System.out.println("\nTrack: ");

for (int j = 0; j < track.size(); j++) {

MidiEvent event = track.get(j);

System.out.println(" tick "+event.getTick()+", "+

MessageInfo.toString(event.getMessage()));

} // for

/* Now we just save the Sequence to the file we specified.

The ’0’ (second parameter) means saving as SMF type 0.

86 CHAPTER 8. APPENDIX

(type 1 is for multiple tracks).

*/

try{

MidiSystem.write(sequence, 1, outputFile);

}catch (IOException e){

e.printStackTrace();

System.exit(1);

}

}

// note representation: tick, duration, pitch

//turns note on

private static MidiEvent createNoteOnEvent(int nKey,

long lTick,int channel,int velocity){

return createNoteEvent(ShortMessage.NOTE_ON,nKey,velocity,lTick,channel);

}

//turns note off

private static MidiEvent createNoteOffEvent(int nKey,

long lTick,int channel){

//set note to 0 velocity

return createNoteEvent(ShortMessage.NOTE_OFF,nKey,0,lTick,channel);

}

//turns note on or off

private static MidiEvent createNoteEvent(int nCommand,int nKey,

int nVelocity,long lTick,int channel){

ShortMessage message = new ShortMessage();

try{

message.setMessage(nCommand,channel,nKey,nVelocity);

}catch (InvalidMidiDataException e){

e.printStackTrace();

System.exit(1);

}

MidiEvent event = new MidiEvent(message,lTick);

return event;

}

private static void printUsageAndExit(){

out("usage:");

8.9. COMPONENTS/INSTRUMENTCHECK.JAVA 87

out("java CSV2MIDI <infile.csv> <outfile.midi>");

System.exit(1);

}

private static void out(String strMessage){

System.out.println(strMessage);

}

}

8.9 components/InstrumentCheck.java

/**

* InstrumentCheck.java

*

* @author: Fredric

* Uses a file listing all usable instruments to check an instrument is valid

*/

import java.io.BufferedReader;

import java.io.FileReader;

public class InstrumentCheck {

public static int checkInstrument(String filename, String instrumentName, int min, int max)

{

try

{

BufferedReader br = new BufferedReader(new FileReader(filename));

String input;

String[] instruments = new String[(max - min) + 1];

while((input = br.readLine()) != null)

{

// separate the instrument number and name

int divider = input.indexOf(",");

int instrumentcount = Integer.parseInt(input.substring(0, divider).trim());

instruments[instrumentcount] = input.substring(divider + 1).trim();

if(instruments[instrumentcount].compareToIgnoreCase(instrumentName) == 0)

return instrumentcount;

}

}

catch(Exception e)

{

;

}

88 CHAPTER 8. APPENDIX

return -1;

}

}

8.10 sorted instruments.csv

0,Piano

1,Bright Piano

2,Electric Grand

3,Honky Tonk Piano

4,Electric Piano 1

5,Electric Piano 2

6,Harpsichord

7,Clavinet

8,Celesta

9,Glockenspiel

10,Music Box

11,Vibraphone

12,Marimba

13,Xylophone

14,Tubular Bell

15,Dulcimer

16,Hammond Organ

17,Perc Organ

18,Rock Organ

19,Church Organ

20,Reed Organ

21,Accordion

22,Harmonica

23,Tango Accordion

24,Nylon Str Guitar

25,Steel String Guitar

26,Jazz Electric Gtr

27,Clean Guitar

28,Muted Guitar

29,Overdrive Guitar

30,Distortion Guitar

31,Guitar Harmonics

32,Acoustic Bass

33,Fingered Bass

34,Picked Bass

35,Fretless Bass

36,Slap Bass 1

8.10. SORTED INSTRUMENTS.CSV 89

37,Slap Bass 2

38,Syn Bass 1

39,Syn Bass 2

40,Violin

41,Viola

42,Cello

43,Contrabass

44,Tremolo Strings

45,Pizzicato Strings

46,Orchestral Harp

47,Timpani

48,Ensemble Strings

49,Slow Strings

50,Synth Strings 1

51,Synth Strings 2

52,Choir Aahs

53,Voice Oohs

54,Syn Choir

55,Orchestra Hit

56,Trumpet

57,Trombone

58,Tuba

59,Muted Trumpet

60,French Horn

61,Brass Ensemble

62,Syn Brass 1

63,Syn Brass 2

64,Soprano Sax

65,Alto Sax

66,Tenor Sax

67,Baritone Sax

68,Oboe

69,English Horn

70,Bassoon

71,Clarinet

72,Piccolo

73,Flute

74,Recorder

75,Pan Flute

76,Bottle Blow

77,Shakuhachi

78,Whistle

79,Ocarina

80,Syn Square Wave

81,Syn Saw Wave

90 CHAPTER 8. APPENDIX

82,Syn Calliope

83,Syn Chiff

84,Syn Charang

85,Syn Voice

86,Syn Fifths Saw

87,Syn Brass and Lead

88,Fantasia

89,Warm Pad

90,Polysynth

91,Space Vox

92,Bowed Glass

93,Metal Pad

94,Halo Pad

95,Sweep Pad

96,Ice Rain

97,Soundtrack

98,Crystal

99,Atmosphere

100,Brightness

101,Goblins

102,Echo Drops

103,Sci Fi

104,Sitar

105,Banjo

106,Shamisen

107,Koto

108,Kalimba

109,Bag Pipe

110,Fiddle

111,Shanai

112,Tinkle Bell

113,Agogo

114,Steel Drums

115,Woodblock

116,Taiko Drum

117,Melodic Tom

118,Syn Drum

119,Reverse Cymbal

120,Guitar Fret Noise

121,Breath Noise

122,Seashore

123,Bird

124,Telephone

125,Helicopter

126,Applause

8.11. TESTS/PI-SYMPHONY.M 91

127,Gunshot

8.11 tests/pi-symphony.m

/** author @Akiva */

main(){

Sequence s1;

Sequence s2;

Sequence s3;

Sequence s4;

Sequence s5;

Sequence scale;

Number i;

Number j;

Number turn;

Chord c;

Number k;

Number pi1;

Number pi2;

Number pi;

Note n;

turn = 0;

s1 = new_sequence();

s2 = new_sequence();

s3 = new_sequence();

s5 = new_sequence();

scale = major_scale(Cq);

pi1 = 562951413;

pi2 = 323979853;

pi = pi1;

for(i = 0; i < 24; i=i+1){

if(pi == 0){

if(turn){

pi = pi1;

turn = 1-turn;

}

else{

pi = pi2;

turn = 1-turn;

}

}

n = scale[pi%10];

n.duration = pi%10;

s1 = s1+n;

92 CHAPTER 8. APPENDIX

s3= s3 + (n[0].+3);

pi = pi/10;

}

s4 = s1;

play(divide(s4) + divide(divide(transpose(s4,G3,C5)))+E5);

play(divide(s3) + repeat(D3s,Rs,s3.length)+repeat(G4s,Rs,s3.length/2));

play(s5+repeat(s5+Ch+Rh+Gh,s5+R6h+R6h+G6h,3));

}

transpose(s, n1, n2){

Number diff;

Number i;

Note k;

Sequence newseq;

diff = n1.pitch-n2.pitch;

newseq = new_sequence();

for(i = 0; i < s.length; i=i+1){

k = s[i];

newseq = newseq + (k[0] .+ diff);

}

return newseq;

}

repeat(n1,n2,times){

return do_repeat(n1,n2,times,new_sequence());

}

do_repeat(n1, n2, times, so_far){

if(times == 0)

{

return so_far;

}

return do_repeat(n1,n2, times-1, so_far+n1+n2);

}

major_scale(n1){

Sequence p;

Number i;

p = new_sequence();

for(i = 0; i <= 16; i=i+1){

if(i==0 || i==2 || i==4 || i==5 ||

8.12. TESTS/TEST-ADD.M 93

i==7 || i==9 || i== 11 || i==12 || i==14 || i==16){

p = p + (n1 .+ i);

}

}

return p;

}

Sequence divide(Sequence s) {

Sequence result;

Number dur;

Number i;

Chord temp;

result = new_sequence();

for(i = 0; i < s.length; i=i+1) {

temp = s[i];

dur = temp.duration;

dur = dur/2;

temp.duration = dur;

result = result + temp;

}

result = result + result;

return result;

}

8.12 tests/test-add.m

/**

Test add

Tests adding a duration to a note

@author Fred

*/

main() {

Note a;

Sequence b;

Chord c;

b = new_sequence();

a = A3q + 4;

c = new_chord(a);

b = b + c;

b = b + b;

play(b);

94 CHAPTER 8. APPENDIX

}

8.13 tests/test-arpeggio.m

/* Test arpeggio

Tests creating an arpeggio (sequence) from a chord. Library function.

@author Fred

*/

main(){

Note a;

Chord c;

Sequence s;

Number i;

c = new_chord(C,E,G);

s = arpeggiate(c);

play(s);

}

arpeggiate(c)

{

Number n;

Number i;

Sequence s;

s = new_sequence();

n = c.length;

for(i = 0; i < n; i=i+1)

{

s = s + c[i];

}

return s;

}

8.14 tests/test-casts.m

/* Test upper casts

Tests casting note to chord, chord to sequence, and node to sequence

@author Fred

*/

main() {

Note n;

8.15. TESTS/TEST-CHORD.M 95

Chord c;

Sequence s;

n = A;

s = new_sequence();

c = new_chord(n, n .+ 4, n .+ 7);

s = s + c + n;

play(s);

}

8.15 tests/test-chord.m

/** Test chord

*

* Construct a chord and play it

*

* @author Ben

*/

main() {

Note a;

Sequence b;

b = new_sequence();

a = A3q;

a = (a as Chord) + C3q + Eb3q;

b = b + a + a + a;

play(b);

}

8.16 tests/test-chromatic.m

/* Test creating a chromatic scale

Tests that creating a chromatic scale using a function works. Library function

@author Fred

*/

main() {

Note a;

Number n;

Sequence b;

b = chromatic(C);

play(b);

96 CHAPTER 8. APPENDIX

}

chromatic(root)

{

Sequence seq;

Number n;

seq = new_sequence();

seq = seq + root;

for(n = 1; n < 12; n=n+1)

{

seq = seq + (root .+ n);

}

return seq;

}

8.17 tests/test-chromatic-subscript.m

/* Test selecting from a chromatic scale

Tests that selecting from the chromatic scale using a function works

@author Fred

*/

main() {

Note a;

Number n;

Sequence b;

b = new_sequence();

b = b + chromatic_select(C, 0) + chromatic_select(C, 5) + chromatic_select(C, 8);

play(b);

}

chromatic_select(root, index)

{

Sequence seq;

Chord c;

seq = chromatic(root);

c = seq[index];

return c[0];

8.18. TESTS/TEST-DIRECT1.M 97

}

chromatic(root)

{

Sequence seq;

Number n;

seq = new_sequence();

seq = seq + root;

for(n = 1; n < 12; n=n+1)

{

seq = seq + (root .+ n);

}

return seq;

}

8.18 tests/test-direct1.m

/**

* Tests direct selection as lvalue.

* @author Ben

*/

main() {

Note a;

Note f;

Sequence b;

Chord c;

b = new_sequence();

a = A5q;

a = (a as Chord) + C5 + Eb5;

f = A6s;

c = (f as Chord) + C6 + Eb6;

c.duration = 32;

b = b + a;

b.current = 0;

b = b + c;

play(b);

}

8.19 tests/test-direct.m

/* Test direct selection

98 CHAPTER 8. APPENDIX

Transposes a chord from one key to another through direct selection

@author Fred

*/

main(){

Note a;

Chord c;

Sequence s;

Number i;

s = new_sequence();

c = new_chord(C,E,G);

s = s + transpose(c, C, C) + transpose(c, C, E) + transpose(c, C, C) + transpose(c, C, G);

set_tempo(30);

play(s);

}

transpose(input, first, second)

{

Number n;

n = first.pitch - second.pitch;

return shift(input, n);

}

shift(c, n)

{

Number i;

Number len;

len = c.length;

for(i = 0; i < len; i=i+1)

{

c[i] = c[i] .+ n;

}

return c;

}

8.20 tests/test-divide.m

/* Test divide

Tests division operator.

@author Ben

*/

8.20. TESTS/TEST-DIVIDE.M 99

main() {

Note a;

Chord c;

Sequence s;

Sequence final;

Number i;

c = new_chord(Ch,E,G, G#);

final = new_sequence();

s = new_sequence();

s = arpeggiate(c);

final = final + s;

while(c.duration/2 != 0) {

s = divide(s);

final = final + s;

c = s[0];

}

set_instrument("58");

set_tempo(160);

play(final);

}

Sequence arpeggiate(Chord c) {

Number n;

Number i;

Sequence s;

s = new_sequence();

n = c.length;

for(i = 0; i < n; i=i+1)

{

s = s + c[i];

}

return s;

}

Sequence divide(Sequence s) {

Sequence result;

Number dur;

Number i;

Chord temp;

result = new_sequence();

for(i = 0; i < s.length; i=i+1) {

temp = s[i];

100 CHAPTER 8. APPENDIX

dur = temp.duration;

dur = dur/2;

temp.duration = dur;

result = result + temp;

}

result = result + result;

return result;

}

8.21 tests/test-dvorak.m

/* Test integration

Try to reproduce part of Dvorak’s String Quartet No 12, Op 96, "American"

first Mvmt.

@author Ben

*/

main() {

set_instrument("Cello");

set_tempo(112);

play(transpose(transpose(soprano(), F, C), F, Ab));

play(transpose(alto(), F, Ab));

play(transpose(transpose(tenor(), F, C), F, Ab));

play(transpose(shift(baritone(), (0-24)), F, Ab));

}

Sequence soprano() {

Sequence sop;

sop = new_sequence();

sop = sop + Re;

while(sop.current/16 < 5) {

sop = sop + F5s + A5s;

}

while(sop.current < 10) {

sop = sop + F5s + A5s;

}

sop = sop+arpeggiate(new_chord(F5s,C5,A,F,A,C5));

sop = sop + shift(melody(), 12);

return sop;

}

/** Alto track */

8.21. TESTS/TEST-DVORAK.M 101

Sequence alto() {

Sequence alt;

Number i;

alt = new_sequence();

alt = alt + Rh + Re;

while(alt.current/16 < 2) {

alt = alt + Es + Gs;

}

i = alt.current;

while((alt.current-i)/16 < 8) {

alt = alt + Es + Cs;

}

return alt;

}

/** Tenor track */

Sequence tenor() {

Sequence ten;

Number i;

ten = new_sequence();

ten = ten + Rw + Rw;

ten = ten + shift(melody(), (0-12));

i = ten.current;

while((ten.current-i)/16 < 4) {

ten = ten + F3s + A3s;

}

return ten;

}

Sequence baritone() {

Sequence bar;

bar = new_sequence();

bar = bar + Rh + Rq + Re + Ce + (Ch + (16*4));

bar = bar + Ee + Ge + Ee + (C+2)+Rh+C5e+Re+Ee+Re+Ge+R+C5e+Ce;

bar = bar + (R+2)+A3e+Re

+ arpeggiate(new_chord(Ce,E,G,C5,R,E5,C5,A5,G5,C5,R));

return bar;

}

Sequence arpeggiate(Chord c) {

Number n;

Number i;

Sequence s;

102 CHAPTER 8. APPENDIX

s = new_sequence();

n = c.length;

for(i = 0; i < n; i=i+1)

{

s = s + c[i];

}

return s;

}

Sequence melody() {

Sequence m;

m = new_sequence();

m = m + Fe + A + C5e + (D5e+1) + F5s + D5;

m = m + (C5e+1) + As + Fe + Gs + As + C5h;

m = m + (Ce+1) + Ds + Fs + Ds + Re;

m = m + (Ce+1) + Ds + Fs + Ds + Re;

m = m + Cs+Fs+As+C5s+(C5e+1)+As+(F+2)+Re;

return m;

}

Sequence transpose(Sequence s, Note source, Note target) {

Number diff;

Number i;

Number j;

Chord temp;

diff = (target.pitch - source.pitch)%12;

for(i = 0; i < s.length; i=i+1){

temp = s[i];

for(j = 0; j < temp.length; j = j+1) {

temp[j] = temp[j] .+ diff;

}

s[i] = temp;

}

return s;

}

Sequence shift(Sequence s, Number steps) {

Chord temp;

Number i;

Number j;

for(i = 0; i < s.length; i=i+1){

temp = s[i];

8.22. TESTS/TEST-EQUALITY.M 103

for(j = 0; j < temp.length; j = j+1) {

temp[j] = temp[j] .+ steps;

}

s[i] = temp;

}

return s;

}

8.22 tests/test-equality.m

/* Test structural equality

Tests that checking equality of sequences, chords, and notes works

(Otherwise, there will be no output)

@author Fred

*/

main() {

Note a;

Number n;

Sequence b;

Chord c;

b = new_sequence();

a = A3q;

a = (a as Chord) + C3q + Eb3q;

c = new_chord(C, E, G);

b = b + a + a + a;

n = 4;

if(b == b && c == c && a == a)

{

play(b);

}

}

8.23 tests/test-for1.m

/**

* Tests a for loop without doing any particular operations in the loop.

* @author Akiva

*/

main()

104 CHAPTER 8. APPENDIX

{

Note a;

Number i;

Sequence b;

for (i = 0 ; i < 10 ; i = i + 1) {

a = B;

}

b = new_sequence() + a;

play(b);

}

8.24 tests/test-for2.m

/** Test for loop

*

* Test the for loop by adding chords to a sequence.

*

* @author Ben

*/

main() {

Note a;

Sequence b;

Number i;

b = new_sequence();

a = Aq;

for (i = 0 ; i < 12 ; i = i + 1) {

b = b + a;

b = b + ((a as Chord) + (a .+ i));

}

play(b);

}

8.25 tests/test-for3.m

/** Test for loop

*

* Test the for loop by adding notes to a sequence.

*

* @author Ben

8.26. TESTS/TEST-FOR4.M 105

*/

main() {

Note a;

Sequence b;

Number i;

b = new_sequence();

a = Aq;

for (i = 0 ; i < 12 ; i = i + 1) {

b = b + (a as Chord) + (a .+ i);

}

play(b);

}

8.26 tests/test-for4.m

/**

* Tests more complicated stuff in for loops.

* @author Akiva

*/

main() {

Sequence b;

Sequence c;

Chord d;

Chord e;

Chord f;

Note rest;

Note g;

Number i;

b = new_sequence();

c = new_sequence();

g = Fh;

d = new_chord(Fw,A,C);

e = new_chord(Gw,B,D);

f = new_chord(Cw,E,G);

for(i = 0; i <= 12; i=i+1){

if(i == 0 || i == 2 || i == 4 || i==5 || i==7 || i==9 || i==11 || i==12){

106 CHAPTER 8. APPENDIX

c = c + (g .+ i);

} else {

if(i%2 == 0){

c = c + f;

}

else {

c = c + e;

}

}

}

c = c + d;

rest = Rh;

play(b);

play(c);

}

8.27 tests/test-for5.m

/**

* This code demonstrates continue and break.

*

* The output is shown to not include C#, as we continue on i==4.

* In addition, the length of output is limited by the break command.

* @author Akiva

*/

main(){

Note d;

Sequence c;

Number i;

c= new_sequence();

d = A;

for(i = 0; i < 200; i=i+1){

if(i==4){

continue;

} else {

c = c + (A .+ i);

}

if(i==12){

break;

}

}

8.28. TESTS/TEST-GEN-HARMONY.M 107

play(c);

}

8.28 tests/test-gen-harmony.m

/* Test creating a melody and harmony

Tests by creating a simple melody and then a harmony for it

@author Fred

*/

main() {

Note e;

Note d;

Note c;

Note fc;

Note fd;

Sequence b;

e = E4q;

d = D4q;

c = C4q;

fc = C4s;

fd = D4s;

b = new_sequence();

b = b + e + d + c + e + d + c;

b = b + fc + fc + fc + fc;

b = b + fd + fd + fd + fd;

b = b + e + d + c;

b = harmony(b, C);

set_tempo(30);

play(b);

}

harmony(s, key)

{

Sequence out;

Chord c;

Note root;

Number len;

Number i;

len = s.length;

108 CHAPTER 8. APPENDIX

out = new_sequence();

for(i = 0; i < len; i = i+1)

{

c = s[i];

root = c[0];

out = out + in_major_chord(root, key);

}

return out;

}

in_major_chord(root, key)

{

Chord c;

if(key.pitch - root.pitch == 0 ||

key.pitch - root.pitch == 12 || key.pitch - root.pitch == (0-12) ||

key.pitch - root.pitch == 5 || key.pitch - root.pitch == (0-5) ||

key.pitch - root.pitch == 7 || key.pitch - root.pitch == (0-7))

{

c = major(root);

}

else

{

c = minor(root);

}

c = shift(c, (0-12));

return c;

}

shift(c, n)

{

Number i;

Number len;

len = c.length;

for(i = 0; i < len; i=i+1)

{

c[i] = c[i] .+ n;

}

return c;

}

major(root)

{

Chord c;

8.29. TESTS/TEST-GLOBAL.M 109

c = new_chord(root);

c = c + (root .+ 4);

c = c + (root .+ 7);

return c;

}

minor(root)

{

Chord c;

c = new_chord(root);

c = c + (root .+ 3);

c = c + (root .+ 7);

return c;

}

8.29 tests/test-global.m

/* Test global

Uses global variables to test them

@author Fred

*/

Note a;

Sequence b;

Chord d;

main() {

b = new_sequence();

a = A3q;

a = (a as Chord) + C3q + Eb3q;

mod();

play(b);

}

mod()

{

b = b + a + a + a;

}

110 CHAPTER 8. APPENDIX

8.30 tests/test-harmonicminor.m

/* Test harmonicminor

Testing harmonic minor scale creation. Library function

@author Ye

*/

main() {

Note a;

Number n;

Sequence b;

b = harmonicminor(C);

play(b);

}

harmonicminor(root)

{

Sequence seq;

Number n;

seq = new_sequence();

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 1;

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 1;

seq = seq + root;

root = root .+ 3;

seq = seq + root;

root = root .+ 1;

seq = seq + root;

8.31. TESTS/TEST-INEQUALITY.M 111

return seq;

}

8.31 tests/test-inequality.m

/* Test structural inequality

Tests that checking equality of sequences, chords, and notes works.

The sequence plays only if all the inequalities work correctly.

@author Ye

*/

main() {

Number n1;

Number n2;

Note a1;

Note a2;

Note a3;

Sequence s1;

Sequence s2;

Sequence s3;

Chord c1;

Chord c2;

Chord c3;

n1 = 4;

n2 = 8;

/* different duration of the same note, and different notes of the same duration */

a1 = C;

a1.duration = n1;

a2 = C;

a2.duration = n2;

a3 = D;

a3.duration = n2;

/* different duration of the same chord, and different chords of the same duration */

c1 = new_chord(C, E, G);

c1.duration = n1;

c2 = new_chord(C, E, G);

c2.duration = n2;

c3 = new_chord(C, E, A);

c3.duration = n2;

112 CHAPTER 8. APPENDIX

/* different order of same chords in sequence, different sequences */

s1 = new_sequence();

s1 = s1 + c1;

s1 = s1 + c2;

s2 = new_sequence();

s2 = s2 + c2;

s2 = s2 + c1;

s3 = new_sequence();

s3 = s3 + c3;

s3 = s3 + a1;

if(n1 != n2 && a1 != a2 && a2 != a3 && c1 != c2 && c2 != c3 && s1 != s2 && s2 != s3)

{

play(s1);

}

}

8.32 tests/test-instrument.m

/**

* Tests setting the instrument used.

*

* @author Fred

*/

main() {

Note a;

Sequence b;

Chord c;

b = new_sequence();

a = A3q;

a = (a as Chord) + C3q + Eb3q;

b = b + a + a + a;

set_instrument("Piano");

play(b);

}

8.33 tests/test-major.m

/* Test major

Tests creating a major chord from its root. Library function.

@author Fred

*/

8.34. TESTS/TEST-MAJORSCALE.M 113

main(){

Sequence s;

Chord c;

s = new_sequence();

c = major(C);

s = s + c;

set_tempo(30);

play(s);

}

major(root)

{

Chord c;

c = new_chord(root);

c = c + (root .+ 4);

c = c + (root .+ 7);

return c;

}

8.34 tests/test-majorscale.m

/* Test majorscale

Testing major scale creation. Library function

@author Ye

*/

main() {

Note a;

Number n;

Sequence b;

b = majorscale(C);

play(b);

}

majorscale(root)

{

Sequence seq;

Number n;

114 CHAPTER 8. APPENDIX

seq = new_sequence();

seq = seq + root;

for(n = 1; n < 3; n=n+1)

{

root = root .+ 2;

seq = seq + root;

}

root = root .+ 1;

seq = seq + root;

for(n = 1; n < 4; n=n+1)

{

root = root .+ 2;

seq = seq + root;

}

root = root .+ 1;

seq = seq + root;

return seq;

}

8.35 tests/test-melodicminor.m

/* Test harmonicminor

Testing melodic minor scale creation. Library function

@author Ye

*/

main() {

Note a;

Number n;

Sequence b;

b = melodicminor(C);

play(b);

}

melodicminor(root)

{

Sequence seq;

8.36. TESTS/TEST-MELODY.M 115

Number n;

seq = new_sequence();

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 1;

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 1;

seq = seq + root;

return seq;

}

8.36 tests/test-melody.m

/* Test creating a melody

Tests by creating a simple melody

@author Fred

*/

main() {

Note e;

Note d;

Note c;

Note fc;

Note fd;

Sequence b;

e = E4q;

116 CHAPTER 8. APPENDIX

d = D4q;

c = C4q;

fc = C4s;

fd = D4s;

b = new_sequence();

b = b + e + d + c + e + d + c;

b = b + fc + fc + fc + fc;

b = b + fd + fd + fd + fd;

b = b + e + d + c;

play(b);

}

8.37 tests/test-minor.m

/* Test minor

Tests creating a minor chord from its root. Library function.

@author Fred

*/

main(){

Sequence s;

Chord c;

s = new_sequence();

c = minor(C);

s = s + c;

set_tempo(30);

play(s);

}

minor(root)

{

Chord c;

c = new_chord(root);

c = c + (root .+ 3);

c = c + (root .+ 7);

return c;

}

8.38. TESTS/TEST-MULTIPLY.M 117

8.38 tests/test-multiply.m

/**

Test multiply

Tests multiplying

@author Ye

*/

main() {

Note a;

Sequence b;

Number n;

b = new_sequence();

a = A4s;

b = b + a;

for (n = 1; n < 5; n = n + 1) {

a.duration = a.duration * 2;

b = b + a;

}

play(b);

}

8.39 tests/test-naturalminorscale.m

/* Test naturalminorscale.m

Testing natural minor scale creation. Library function

@author Ye

*/

main() {

Note a;

Number n;

Sequence b;

b = naturalminorscale(C);

play(b);

}

naturalminorscale(root) {

118 CHAPTER 8. APPENDIX

Sequence seq;

Number n;

seq = new_sequence();

/* natural minor starts on the 6th note of the major scale in the octave below */

root = root .+ (0 - 3);

seq = seq + root;

root = root .+ 2;

seq = seq + root;

root = root .+ 1;

seq = seq + root;

for(n = 1; n < 3; n=n+1)

{

root = root .+ 2;

seq = seq + root;

}

root = root .+ 1;

seq = seq + root;

for(n = 1; n < 3; n=n+1)

{

root = root .+ 2;

seq = seq + root;

}

return seq;

}

8.40 tests/test-note.m

/** Test note literal

*

* Construct a note literal and play it

*

* @author Ben

*/

main() {

Note a;

8.41. TESTS/TEST-NUMERICAL-EQUALITY.M 119

Sequence b;

a = A3q;

b = new_sequence() + a;

play(b);

}

Note myA() {

return Ab7;

}

8.41 tests/test-numerical-equality.m

/* Test numerical equality

Tests that checking equality of numbers works

@author Fred

*/

main() {

Note a;

Number n;

Sequence b;

b = new_sequence();

a = A3q;

a = (a as Chord) + C3q + Eb3q;

b = b + a + a + a;

n = 4;

if(n == 4)

{

play(b);

}

else

{

b = b + A3q;

play(b);

}

}

8.42 tests/test-play-chord.m

/* Test play chord

Tests playing a single chord

@author Fred */

120 CHAPTER 8. APPENDIX

main() {

Chord c;

Sequence s;

s = new_sequence();

c = new_chord(C, E, G);

s = s + c;

play(s);

}

8.43 tests/test-play-note.m

/* Test play note

Tests playing a single note

@author Fred

*/

main() {

Note a;

Sequence s;

s = new_sequence();

a = A3q;

s = s + a;

play(s);

}

8.44 tests/test-rand.m

/**

* Test the random function. This test has to fail to be valid.

* @author Ben

*/

main() {

Note a;

Sequence b;

Number i;

Number r;

b = new_sequence();

a = As;

for (i = 0 ; i < 20 ; i = i + 1) {

r = rand(15);

b = b + (a .+ r + r);

8.45. TESTS/TEST-RECURSION.M 121

}

play(b);

}

8.45 tests/test-recursion.m

/** Test recursion

*

* This test shows the power of recursion in MIDILC.

*

* Sequences are created using the get_new_seq method, which calls itself

* recursively to create ever more elaborate musical pieces.

*

* @author Akiva

*/

main(){

Number i;

Sequence seq;

i = 5;

seq = get_new_seq(i, new_sequence());

play(seq);

}

Sequence get_new_seq(Number i, Sequence seq){

seq = seq + (G.+(mult(i,5))) + seq + (C.+(mult(i,5))) + seq + (E.+(mult(i,5)));

if(i == 0){

return seq;

}

i = i-1;

return get_new_seq(i, seq);

}

mult(original, times){

return do_mult(original, times-1, original);

}

do_mult(original, times, toreturn){

if(times <= 0){

return toreturn;

}

return do_mult(original, times-1, toreturn+original);

}

122 CHAPTER 8. APPENDIX

8.46 tests/test-sequence.m

/**

* Test sequences

* @author Fred

*/

main() {

Note a;

Sequence b;

Sequence seq;

Note root;

Chord chor;

Chord chor2;

Chord chor3;

b = new_sequence();

seq = new_sequence();

root = C4q;

chor = (root as Chord) + E4q + G4q;

b = b + chor;

root = F4q;

chor2 = (root as Chord) + A5q + C5q;

root = G4q;

chor3 = (root as Chord) + B5q + D5q;

seq = seq + chor2 + chor3;

seq = b + seq;

play(seq);

}

8.47 tests/test-shift.m

/* Test selection

Tests selection by shifting notes’ pitch

@author Fred

*/

main(){

Note a;

Chord c;

Chord d;

Sequence s;

Number i;

s = new_sequence();

8.48. TESTS/TEST-STAIRWAY.M 123

c = new_chord(C,E,G);

s = s + shift(c, 0) + shift(c, 4) + shift(c, 0) + shift(c, 7);

set_tempo(30);

play(s);

}

shift(c, n)

{

Number i;

Number len;

len = c.length;

for(i = 0; i < len; i=i+1)

{

c[i] = c[i] .+ n;

}

return c;

}

8.48 tests/test-stairway.m

main(){

set_instrument("Voice Oohs");

set_tempo(80);

play(stairway1() + stairway2() + stairway1() + stairway3());

}

stairway1(){

Sequence s;

s = new_sequence();

s = s + new_chord(C5e, A3e) + C4e + E4e + A4e;

s = s + new_chord(B4e, G#e) + E4e + C4e + B4e;

s = s + new_chord(C5e, Ge) + E4e + C4e + C5e;

s = s + new_chord(F#4e, F#3e) + D4e + A3e + F#4e;

s = s + new_chord(E4e, F3e) + C4e + A3e + C4q;

s = s + E4e + C4e + A3e;

s = s + new_chord(A2e, D3e, G3e, B3e) + new_chord(A2e, E3e, A3e, C4e) + new_chord(A2q, E3e, A3e, C4e);

return s;

}

stairway2(){

Sequence f;

f = new_sequence() + Re + A2e + F3e + E3e;

return f;

124 CHAPTER 8. APPENDIX

}

stairway3(){

Sequence f;

f = new_sequence() + Rq + A2e + B2e;

return f;

}

8.49 tests/test-sub.m

/* Test subtraction

Tests subtracting a duration from a note

@author Fred

*/

main() {

Note a;

Sequence b;

Chord c;

b = new_sequence();

a = A3q;

a.duration = a.duration - 1;

c = new_chord(a);

b = b + c;

b = b + b;

play(b);

}

8.50 tests/test-subscript.m

/** Tests subscripting.

*

* @author Ben

*/

main() {

Note a;

Sequence b;

Chord c;

Chord temp;

Number s;

a = A5w;

b = new_sequence();

8.51. TESTS/TEST-TEMPO.M 125

a = (a as Chord) + C5 + Eb5;

c = a;

c[1] = A6;

c[2] = A4;

b = b + a;

b = b + c;

b = b + c;

/* set the start time of a to the start time of the 3rd note */

temp = b[2];

s = temp.start;

a.start = s;

b[2] = a;

play(b);

}

8.51 tests/test-tempo.m

/**

* Tests setting the tempo

* @author Fred

*/

main() {

Note a;

Sequence b;

Chord c;

b = new_sequence();

a = A3q;

a = (a as Chord) + C3q + Eb3q;

b = b + a + a + a;

set_tempo(40);

play(b);

}

