
DiGr: Directed Graph Processing Language

Ari Golub
Bryan Oemler

Dennis V. Perepelitsa

Columbia University
COMS W4115: Programming Languages and Translators

22 December 2010
Final Project Presentation

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Introduction to DiGr

What can DiGr do?

Represent trees, graphs, walks, (mirrors, knots, etc).

Model everything from basic computer science constructs to
network-based problems in engineering and industry.

Store information in nodes and edges without overhead or
hassle.

Recursively or iteratively walk and modify directed graphs in
user-specified ways.

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Introduction to DiGr

What is the DiGr language / compiler like?

Imperative.

Compiled. Target language is C++, which is in turn compiled
with g++ and linked against the DiGr backend.

Statically (and locally) scoped.

Specific graph-related objects (nodes, edges, walks) on top of
a typed C-like base.

Strongly typed.

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Primitive types and opts

Integers, floating point numbers and strings are primitive
types.

: this is a comment :

str name = "Ari"!

int age!

age = 22!

flt gpa = 4.0! : statements end with a ! :

Opts have no return types, but have in (not globally bound)
and out (in-scope from the program that called them)
variables.

opt times two(in int n; out int doubled){
doubled = n * 2!

}

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Nodes and edges

The high-level objects in DiGr are nodes and edges:

node n1!

node n2!

n1 -> n2! : n1 and n2 are now connected :

Node and edge identifiers are handles. Edges are usually
created anonymously:

edge e = n1.outedge(0)!

node target = e.innode!

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Connection contexts and attributes

Attributes are created as soon as they are referenced or
assigned:

node city!

city.population = 60000!

print(city.population)! : prints 60000 :

print(city.area)! : defaults to 0 :

Connection contexts efficiently create graphs, and store the
handles to the nodes in an array:

node binaryTree[7] = |3->(1->0,2),(5->4,6)| !

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Crawls and rules

A crawl is an opt run on a node, and can call a rule that
tells it where to go next.

crawl markNode(in int marker) {
current.mark = marker!

call! }

Rules modify the queue of nodes to visit when called:

rule followLighterEdge{
edge e1 = current.outedge(0)!

edge e2 = current.outedge(1)!

if (e1.weight < e2.weight)

{ add(e1.child(0))! }
else { add(e2.child(0))! }

}

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

DiGr in one slide

crawl printNode() { print(current.id)! call! }
: print the node id and call the rule :

rule preOrder { addByFront(node.id,̃,2)! }
: add up to two children, smallest id first :

opt main() {
node tree[5] = |3->(1->0,2),4| !

tree[0].id = 0! tree[1].id = 1! tree[2].id = 2!

tree[3].id = 3! tree[4].id = 4!

printNode() from tree[3] with preOrder!

: prints 3 1 0 2 4 :

}

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Compiler Front End

lexer

parsertokens interpreterDiGr AST verified
 DiGr AST

DiGr code

DiGr AST
 definition

Scanner turns DiGr program from standard input into tokens.
Lexical correctness.

Parser creates initial AST (nested OCaml tree of typed
tuples). Syntactical correctness.

Interpreter verifies AST. Semantic correctness.

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Static Semantic Checking

The interpreter has several duties:

Create global scope for opt/rule/crawl signatures.

Create symbol table for all local scopes (inside functions and
blocks).

Check the scope of all identifiers.

Check typing for all statements (recurse into expressions),
including assignment, function calls, etc.

After the front-end stage, intermediate representation of a
sensible program (instance of DiGr AST).

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

Compiler Back End

translator compilerC++ AST

g++C++ code executableverified
 DiGr AST

minimal C++
 AST definition

DiGr C++
 backend

C++ AST: stripped-down, holds intermediate representation
of C++ program. A few shortcuts, but largely extensible.
C++ AST assures syntactical correctness of output.

Translator: converts DiGr AST to C++ AST. Does no
semantic checking.

Compiler: crawls the C++ AST and outputs C++ code.

g++: turns compiled DiGr code into an executable.

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

DiGr code pre-compilation

rule myrule {
int n = 0!

while (n < current.outedges) {
edge tmp edge = current.outedge(n)!

if (tmp edge.mark == 1) {
node destination = tmp edge.innode!

add(destination)!

}
n = n + 1!

}
}
crawl thecrawl() {

print (current.id)!

call!

}

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

DiGr compiler output

#include "digr.h"

#include <iostream>

void myrule(DiGrNode *current, deque<DiGrNode*> *returnQueue) {
int n = 0 ;

while(n < current->OutEdges())

{DiGrEdge *tmp edge = current->getOutEdge(n);

if(tmp edge->getAttribute("mark") == 1)

{DiGrNode *destination = tmp edge->inNode();

returnQueue->push back(destination);

}
else{}
n=n + 1 ;

}
}
void thecrawl(DiGrNode *current, void (*rule)(DiGrNode*, deque<DiGrNode*>*)) {
deque<DiGrNode*> *queue = new deque<DiGrNode*>();

queue->push back(current);

do {
current=queue->front();

queue->pop front();

std::cout << current->getAttribute("id") << std::endl;

rule(current, queue);

} while (queue->size() > 0);

}

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

DiGr Test Plan

For each test program, we have a gold standard that
execution should output. Every build, we compile and execute
all tests and compare output with the gold standard.

Test atomic DiGr elements from low-level (basic types,
arithmetic, function calls, etc.) to high-level (graphs,
attributes, connection contexts, etc.).

Test programs which integrate a wide cross-section of features.

Test errors at compilation (really, the interpret stage), and at
run-time.

Golub, Oemler, Perepelitsa DiGr: Directed Graph Processing Language

