
m

A language for music generation.

Ethan Hann (eh2413)

Yiling Hu (yh2378)

Monica Ramirez-Santana (mir2115)

Jiaying Xu (jx2129)

Language Description

 The language will allow a composer to write algorithms that generate music. The

fundamental type is Integer. All other types are derived from this type. The derived types are

based on traditional music concepts. Notes consist of a pitch, intensity (volume), and duration.

Chords are defined as a list of Notes. Notes and Chords are assigned to Staffs. All of the

Notes/Chords on a staff are played at a specific tempo, in the order that they were added.

Multiple Staffs can be included into a Part. This allows songs to have different sections of

varying tempo, akin to traditional music.

Type Summary:

Types Derived Types

Integer Note

 Chord

 Staff

 Part

 When a program written in the language is compiled, all Parts are played

simultaneously. This feature of the language can be used to mimic the right hand and left hand

sections of a piano piece or the different instruments of a multi-instrument ensemble.

Problem Language Solves and How It Should Be Used

 Many interesting uses for the language exist. This is due to the fact that all musical

phenomena are derived types of the Integer type. The language makes possible the

mathematical manipulation of music through integer arithmetic, randomization, and classical

programming control structures. Traditionally, composers would have to write out every note

of their composition, but using this language the composer could simply specify sets of notes

and chords that are used in conjunction with control structures, and a randomization function,

to algorithmically generate music. Algorithms designed by the composer, and in the standard

library, can generate music in a particular genre, tempo, and key.

 An executable program is produced when an m source file is compiled. When the

program is executed a MIDI/WAV file, which can be played by any variety of music players, is

generated. The resultant music file may be different each time the program is executed

depending on how the composer utilized the randomization functionality of the language.

Language Compilation Process

Source File Compiler Executable
Playable

Music File

Interesting, Representative Program

 The following sample code demonstrates how an algorithmically generated music scale

based on the Fibonacci sequence is generated using the m language.

7 Note Fibonacci Music Scale

Part $guitar_part = (nothing, ElectricGuitar); /* (Staff, Instrument) */

Staff $fib_scale = (nothing, 120, 4); /* (Note/Chord, BPM, Time Signature) */

Note $temp_note = (Cn, 4, 100); /* (Pitch, Duration, Intensity) */

Integer $i;

For ($i = 2; $i <= 9; $i++)

{

 Integer $n = $i, $first = 0, $second = 1, $tmp;

 While ($n--)

 {

 $tmp = $first + $second;

 $first = $second;

 $second = $tmp;

 }

 $fib_scale.notes.add($first);

}

$guitar_part.staves.add($fib_scale);

 A real world application of the language could be to generate music for Pandora’s

(www.pandora.com) user radio stations. The generated music would add novelty and diversity.

Stations would no longer be limited to the realm of recorded songs. Instead, each song would

be different from any that the user had heard before. This would solve the problem of users

becoming bored with their radio stations.

