
Next
Language Reference Manual

Ernesto Arreguin (eja2124)
Danny Park (dsp2120)

Morgan Ulinski (mu2189)
Xiaowei Zhang (xz2242)

1

Contents

1 Introduction 3

2 Lexicon 3
2.1 Character Set . 4
2.2 Identifiers . 4
2.3 Comments . 5
2.4 Keywords . 5
2.5 Operators . 5
2.6 Punctuators . 6
2.7 String and integer literals . 7

3 Basic Concepts 7
3.1 Blocks and Compound Statements 7
3.2 Scope . 7
3.3 Side Effects and Sequence Points 8

4 Data Types 8

5 Declarations 8
5.1 Primitive Types . 9
5.2 Complex Types . 9

6 Expressions and Operators 10
6.1 Primary Expressions . 10
6.2 Overview of the Next Operators 10
6.3 Unary Operators . 13

6.3.1 Unary Minus . 13
6.3.2 Logical Negation . 14
6.3.3 Gameplay Operators (exists) 14

6.4 Binary Operators . 14
6.4.1 Dot operator . 15
6.4.2 Multiplicative Operators 15
6.4.3 Additive Operators . 15
6.4.4 Relational Operators 15
6.4.5 Equality Operators . 16
6.4.6 Logical Operators . 16

6.5 Assignment Operator . 16

2

7 Statements 17
7.1 Labeled Statements . 17
7.2 Compound Statements . 17
7.3 Expression Statements . 18
7.4 Selection Statements . 18

7.4.1 The if Statement . 18
7.4.2 The choose Statement 19
7.4.3 The prob Statement 20

7.5 Iteration (start) Statements 20
7.6 Gameplay Statements . 21

7.6.1 Grab and Drop . 21
7.6.2 Hide and Show . 21
7.6.3 Output . 21
7.6.4 Kill . 22
7.6.5 Next . 22

8 Example Program 22

1 Introduction

The Next programming language provides a way to easily create text-based
computer games. It is particularly good for creating text-based RPGs (or
digital “choose your own adventure stories”). Users of the language can
specify locations, characters, and items that will appear in the game, and
using Next language elements they can design the plot of the game, the
actions that can take place, and beginning and end conditions.

2 Lexicon

The Next programming language uses a standard grammar and character
set. Characters in the source code are grouped into tokens, which can be
punctuators, operators, identifiers, keywords, or string literals. The compiler
forms the longest possible token from a given string of characters; tokens
end when white space is encountered, or when it would not be possible for
the next character to be part of the token. White space is defined as space
characters, tab characters, return characters, and newline characters.

3

The compiler processes the source code and identifies tokens and locates
error conditions. There are three types of errors:

• Lexical errors occur when the compiler cannot form a legal token from
the character stream.

• Syntax errors occur when a legal token can be formed, but the compiler
cannot make a legal statement from the tokens.

• Semantic errors, which are grammatically correct and thus pass through
the parser, but break another Next rule. For example, it is possible to
kill a character or item, but not a location.

2.1 Character Set

The Next programming languages accepts standard ASCII characters.

2.2 Identifiers

An identifier is a sequence of characters that represents a name for a:

• Variable

• Location

• Character

• Item

• Action (only within a choose statement)

Rules for identifiers:

• Identifiers consist of a sequence of one or more uppercase or lowercase
characters, the digits 0 to 9, and the underscore character ().

• Identifier names are case sensitive.

• Identifiers cannot begin with a digit or an underscore.

• Keywords are not identifiers.

4

2.3 Comments

Comments are introduced by /* and ended by */, except within a string
literal, where the characters "/*" would be displayed directly. Comments
cannot be nested. If a comment is started by /*, the next occurrence of */
ends the comment.

2.4 Keywords

Keywords identify statement constructs and specify basic types. Keywords
cannot be used as identifiers. The keywords are listed in Table 1.

Table 1: Keywords

if then else and or

start end when choose kill

grab hide exists drop output

character location not item int

string next show

Keywords are used:

• To specify a data type (character, location, item, int, string)

• As part of a statement (if, then, else, start, end, when, choose,

kill, grab, hide, drop, output, next, show)

• As operators on expressions (and, or, exists, not)

2.5 Operators

Operators are tokens that specify an operation on at least one operand and
yield a result (a value, side effect, or combination). Operands are expres-
sions. Operators with one operand are unary operators, and operators with
two operands are binary operators.

Operators are ranked by precedence, which determines which operators are
evaluated before others in a statement.

5

Some operators are composed of more than one character, and others are
single characters.

The single character operators are shown in Table 2.

Table 2: Single-character operators

+ - * / > < = .

The multiple-character operators are shown in Table 3.

Table 3: Multiple-character operators

>= <= == != and or not exists

2.6 Punctuators

Table 4 shows the punctuators in Next. Each punctuator has its own syn-
tactic and semantic significance. Some characters can either be punctuators
or operators; the context specifies the meaning.

Table 4: Punctuators

{ } Compound statement delimiter
() Member variable list; also used in expression grouping
, Member variable separator
; Statement end

" " String literal
[? ?] Probability statements

6

2.7 String and integer literals

Strings are sequences of zero or more characters. String literals are charac-
ter strings surrounded by quotation marks. String literals can include any
valid character, including white-space characters, except for quotation marks.

Integers are used to represent whole numbers. Next does not support floating
point numbers. Integers are specified by a sequence of decimal digits. The
value of the integer is computed in base 10.

3 Basic Concepts

3.1 Blocks and Compound Statements

A block is a section of code consisting of a sequence of statements. A com-
pound statement is a block surrounded by brackets { }.

This is a block:

int x = 1;

x = x + 1;

output x;

This is a compound statement:

{
int x = 1;

x = x + 1;

output x;

}

3.2 Scope

All declarations of locations, characters, items, strings, and integers have
global scope.

7

Actions are listed within a choose statement, and their scope is that choose
statement. Actions are variables that are given values within that scope, but
they are not explicitly declared in a declaration statement.

3.3 Side Effects and Sequence Points

Any operation that affects an operand’s storage has a side effect. This in-
cludes the assignment operation, and operations that alter the items, at-
tributes, etc. within a location or a character.

Sequence points are checkpoints in the program where the compiler ensures
that operations in an expression are concluded. The most important example
of this in Next is the semicolon that marks the end of a statement. All
expressions and side effects are completely evaluated when the semicolon is
reached.

4 Data Types

A type is assigned to an object in its declaration. Table 5 shows the types
that are used in Next.

Table 5: Data Types

int

string

location

character

item

5 Declarations

Declarations introduce identifiers (variable names) in the program, and, in
the case of the complex types (character, location, item), specify impor-
tant information about them such as attributes. When an object is declared,

8

space is immediately allocated for it, and it is immediately assigned a value.
Declarations of integers and strings do not have to include an explicit value;
they will be assigned default values of 0 and “ ”, respectively. Next does not
support complex declarations without a value for the variable.

5.1 Primitive Types

The primitive types in Next are integer and string. These can stand on their
own, or they can serve as attributes within a complex type. Primitive types
are declared as follows:

int identifier = value

string identifier = value

or, receiving default values:

int identifier

string identifier

where:

• identifier stands in for a variable name.

• value stands in for an expression.

5.2 Complex Types

Each of the complex types in Next (item, character, and location) has
its own declaration syntax. The declarations are as follows:

item identifier = { primitive declaration list }

character identifier = { primitive declaration list,

item list }

location identifier = { primitive declaration list,

item list,

character list }

9

where:

• identifier stands in for a variable name.

• primitive declaration list stands in for a list of attribute declara-
tions in the form (declaration 1, declaration 2, ... declaration n),
and each declaration is in the form described above in the description
of primitive types. These represent the attributes (and values for those
attributes) for a given item, character, or location.

• item list and character list stand in for lists of item and char-
acter variable names, respectively, in the form (name 1, name 2, ...

name n). These represent the list of items a character is carrying or are
found in a location, and the characters that are physically in a location.

• Empty lists are permitted in place of any primitive declaration list,
item list or character list, to indicate that there are none of that
type of member variable.

6 Expressions and Operators

An expression is a sequence of Next operators and operands that produces
a value or generates a side effect. The simplest expressions yield values
directly, such as ints, strings, and variable names. Other expressions combine
operators and subexpressions to produce values. Every expression has a type
as well as a value. Operands in expressions must have compatible types.

6.1 Primary Expressions

The most simple type of expressions are those that denote a value directly.
These include identifiers that refer to variables that have already been de-
clared, and integer and string literals. In addition, any more complicated
expression can be enclosed in parentheses and still be a valid expression.

6.2 Overview of the Next Operators

Variables and literals can be used in conjunction with operators to make
more complex expressions. Table 6 shows the Next operators.

10

Table 6: Next Operators

Operator Example Description/Meaning
. c.a Attribute selection in a character, location, or item
- [unary] -a Negative of a
+ a + b a plus b
- [binary] a - b a minus b
∗ a * b a times b
/ a / b a divided by b
< a < b 1 1 if a < b; 0 otherwise
> a > b 1 if a > b; 0 otherwise
<= a <= b 1 if a ≤ b; 0 otherwise
>= a >= b 1 if a ≥ b; 0 otherwise
== a == b 1 if a equal to b; 0 otherwise
!= a != b 1 if a not equal to b; 0 otherwise
and a and b Logical AND of a and b (yields 0 or 1)
or a or b Logical OR of a and b (yields 0 or 1)
not not a Logical NOT of a (yields 0 or 1)
= a = b a, after b is assigned to it
exists exists x.a 1 if a exists in location x or in the inventory of character x;

0 otherwise

11

The Next operators fall into the following categories:

• Unary prefix operators, which precede a single operand.

• Binary operators, which take two operands and perform some arith-
metic or logical operation.

• Assignment operators, which assign a value to a variable.

Operator precedence determines the grouping of terms in an expression. This
affects how an expression is evaluated. Certain operators have higher prece-
dence than others; for example, the multiplication operator has higher prece-
dence than the addition operator:

x = 7 + 3 * 2; /* x is assigned 13, not 20 */

The previous statement is equivalent to the following:

x = 7 + (3 * 2);

Using parentheses in an expression alters the default precedence. For exam-
ple:

x = (7 + 3) * 2; /* (7 + 3) is evaluated first */

In an unparenthesized expression, operators of higher precedence are evalu-
ated before those of lower precedence. Consider the following expression:

A+B*C

The identifiers B and C are multiplied first because the multiplication opera-
tor (*) has higher precedence than the addition operator (+).

Table 7 shows the precedence the Next compiler uses to evaluate operators.
Operators with the highest precedence appear at the top of the table; those
with the lowest precedence appear at the bottom. Operators of equal prece-
dence appear in the same row.

12

Table 7: Precedence of Next Operators

Category Operator Associativity
Dot . Left to right
Gameplay operators exists Non-associative
Unary - not Right to left
Multiplicative * / Left to right
Additive + - Left to right
Relational < <= > >= Left to right
Equality == != Left to right
Logical AND and Left to right
Logical OR or Left to right
Assignment = Right to left

Associativity relates to precedence, and resolves any ambiguity over the
grouping of operators with the same precedence. Most operators associate
left-to-right, so the leftmost expressions are evaluated first. The assignment
operator and the unary operators associate right-to-left.

6.3 Unary Operators

Unary expressions are formed by combining a unary operator with a single
operand. The unary operators in Next are -, not, and exists. The operators
- and not have equal precedence and both have right-to-left associativity, and
exists has a higher precedence and is non-associative.

6.3.1 Unary Minus

The following expression:

- expression

represents the negative of the operand. The operand must have an arithmetic
type.

13

6.3.2 Logical Negation

The following expression:

not expression

results in the logical (Boolean) negation of the expression. If the value of
the expression is 0, the negated result is 1. If the value of the expression is
not 0, the negated result is 0. The type of the result is int. The expression
must have a scalar type.

6.3.3 Gameplay Operators (exists)

The following expressions:

exists location.x

exists character.y

tells us whether x is present either in the given location (x must be an item

or character) or in the given character’s inventory (x must be an item).
The expression returns 1 if x exists and 0 otherwise. The result is type int.

6.4 Binary Operators

The binary operators are categorized as follows:

• Dot operator (.)

• Multiplicative operators: multiplication (*) and division (/)

• Additive operators: addition (+) and subtraction(-)

• Relational operators: less than (<), less than or equal to (<=), greater
than (>), and greater than or equal to (>=)

• Equality operators: equality (==) and inequality (!=)

• Logical operators: AND (and) and OR (or)

• Assignment operator (=)

14

6.4.1 Dot operator

The dot (.) operator is used to select from among the attributes, items,
or characters within an item, character, or location. An item has only at-
tributes; a character has attributes and items; and a location has at-
tributes, items, and characters. The syntax is:

x.y

where x is the containing object and y is the name of the sub-object or
attribute which we are trying to access. The result of the expression is a
reference to the sub-object y.

6.4.2 Multiplicative Operators

The multiplicative operators in Next are * and /. Operands must have arith-
metic type.

The * operator performs multiplication.

The / operator performs division. If two integers don’t divide evenly, the
result is truncated, not rounded.

6.4.3 Additive Operators

The additive operators in Next are + and -. They perform addition and
subtraction respectively.

6.4.4 Relational Operators

The relational operators compare two operands and produce an integer lit-
eral result. The result is 0 if the relation is false, and 1 if it is true. The
operators are: less than (<), greater than (>), less than or equal (<=), and
greater than or equal (>=). Both operands must have an arithmetic type.

The relational operators associate from left to right. Therefore, the following
statement first relates a to b, resulting in either 0 or 1. The resulting 0 or 1
is compared with c for the expression result.

15

if (a < b < c)

{
statement;

}

6.4.5 Equality Operators

The equality operators in Next, equal (==) and not-equal (!=), like relational
operators, produce a result of an integer literal. In the following statement,
the result is 1 if both operands have the same value, and 0 if they do not:

a == b

Both operands must have an arithmetic type.

6.4.6 Logical Operators

The logical operators are and and or. These operators have left-to-right
evaluation. The resulting integer literal is either 0 (false) or 1 (true). Both
operators must have scalar types. If the compiler can make an evaluation by
examining only the left operand, the right operand is not evaluated.

In the following expression,

E1 and E2

the result is 1 if both operands are nonzero, or 0 if one operand is 0.

In the same way, the following expression is 1 if either operand is nonzero,
and 0 otherwise. If expression E1 is nonzero, expression E2 is not evaluated.

E1 or E2

6.5 Assignment Operator

There is only one assignment operator (=) in Next. An assignment results
in the value of the target variable after the assignment. It can be used as

16

subexpressions in larger expressions. Outside of the declaration section, as-
signment operators can only operate on attributes in Next; these are integer
and string literals. Assignment expressions have two operands: a modifiable
value on the left and an expression on the right. In the following assignment:

E1 = E2;

the value of expression E2 is assigned to E1. The type is the type of E1, and
the result is the value of E1 after completion of the operation.

7 Statements

Statements are executed in the sequence in which they appear in the code,
unless otherwise specified.

7.1 Labeled Statements

Next uses labeled statements within the content of a choose statement. The
location name included in a start statement is also a type of label. Both of
these statements will be discussed in more detail in later sections.

7.2 Compound Statements

A compound statement, or block, allows a sequence of statements to be
treated as a single statement. A compound statement begins with a left
brace, contains (optionally) statements, and ends with a right brace, as in
the following example:

{
fred.speed = 5;

if (fred.strength > enemy.strength)

{
enemy.health = enemy.health - 10;

}
else

{
fred.health = fred.health - 10;

17

}
enemy.strength = 50;

}

7.3 Expression Statements

Any valid expression can be used as a statement by following the expression
with a semicolon.

7.4 Selection Statements

A selection statement selects among a set of statements depending on the
value of a controlling expression, or, in the case of prob statements, the value
of a random number. The selection statements in Next are the if statement,
the choose statement, and the prob statement.

7.4.1 The if Statement

The if statement has the following syntax:

if expression then

statement

else

statement2

The statement following the control expression is executed if the value of
the control expression is true (nonzero). The statement in the else clause
is executed if the control expression is false (0). Next does not allow if

statements without a corresponding else clause.

if x + 1 then

output "x was not negative one";

else

output "x was negative one";

When if statements are nested, an else clause matches the most recent if
statement that does not have an else clause, and is in the same block.

18

7.4.2 The choose Statement

The choose statement maps keyboard keys to specific actions and executes
the statements associated with that action, given user input.

Syntax:

/* associates action1 with key1 and action2 with key2 */

choose (action1,action1name,key1) (action2, action2name, key2)

{

when action1

{

statement

} next location

when action2

{

statement

} next location

}

For example:

choose (boom,"blowup","a") (punch,"punch","u")

{

when boom

{

link.life = link.life - 80;

} next palace

when punch

{

[? prob 40 link.life = link.life - 1;

prob 60 link.life = link.life - 33; ?]

} next dungeon

}

If the game player enters “a” on the keyboard, code within the boom block
is executed. If the game player enters “u” on the keyboard, code within the
punch block is executed.

19

7.4.3 The prob Statement

A probability statement executes a statement randomly according to the
given probabilities. It selects and executes a statement randomly given a
certain probability distribution. The probabilities listed within a given prob

statement must add up to 100.

Syntax:

[? prob expression statement

...

?]

For example:

/* Increments count by 1 60% of the time

and decrements count by 1 40% of the time */

[? prob 40 count = count-1;

prob 60 count = count+1; ?]

7.5 Iteration (start) Statements

Iteration statements in Next begin with the start keyword. The statements
inside the following block are executed until an end condition is met. The
end condition must have a scalar type. An iteration statement is specified
by the location in which the action occurs and an end condition that clarifies
when gameplay should stop.

The syntax of a start statement is as follows:

start location identifier end (expression)

statement

where location identifier is the identifier representing the location, and
expression represents the end condition. For example:

start myplace end (junior.life < 1)

{

20

junior.life = junior.life - 1;

output "You have reached the mountains of myplace!";

}

7.6 Gameplay Statements

7.6.1 Grab and Drop

The statements:

grab y.x;

drop y.x;

operate on the item x in character y’s inventory. The grab statement removes
an item from the current location and adds in to the character’s inventory.
The drop statement removes an item from the character’s inventory and adds
it to the current location. The object x must be of type item.

7.6.2 Hide and Show

The statements:

hide y.x;

show y.x;

operate on the item or character x within the location or character inventory
y. The hide statement removes x from y, and the show statement adds x to
y. The object y must be a location or character. If y is a location, x
must be an item or character; if y is a character, x must be an item.

7.6.3 Output

The statement:

output expression;

outputs expression to the screen. Object expression must be of type
string or int.

21

7.6.4 Kill

The statement:

kill x;

removes x permanently from global memory, not just for a given character
or location. There is no way to retrieve x from any part of the game after
this operation has taken place. If you would like to make a character or item
disappear temporarily, use the hide command. The object x must be of type
item or character.

7.6.5 Next

The statement:

next l;

moves the main character from the current location to location l. Code
continues execution at the beginning of the start statement marked with
identifier l.

8 Example Program

int count;

item the_greatest_sword_ever {(int damage = 100000000)}

character xiaowei_the_greatest_man_ever {(int life = 100000000,

int level=99999, string haha="hahahahaha"), (the_greatest_sword_ever)}

location where_is_this_place {(int sizex = 10000, int sizey=9283), (),

(xiaowei_the_greatest_man_ever)}

start where_is_this_place end (xiaowei_the_greatest_man_ever.life < 0) {

choose (attack,"hia!","a") (up,"up","u") {

when attack

{

xiaowei_the_greatest_man_ever.life+1;

22

} next where_is_this_place

when up

{

[? prob 40 count = count-1;

prob 60 count = count+1; ?]

} next where_is_this_place

}

}

23

