

 YAIL LRM

Andrew Kisch (aik2113)
Aniket Phatak (avp2110)
Pranay Prabhakar (ppp2113)
Uday Chandrasen (uc2124)

Instructor –
Prof. Stephen A Edwards

COMS W4115 – Fall 2010

Contents –

1. Introduction 3

2. Lexical Conventions 3

 2.1 Comments 3

 2.2 Identifiers 3

 2.3 Keywords 3

 2.4 Constants 3

3. Data Types 4

 3.1 Int 4

 3.2 Float 4

 3.3 String 4

 3.4 Image 4

 3.5 Color 4

 3.6 Filter 4

 3.7 User Defined Types 4

 3.7.1 Arrays 4

 3.7.2 Functions 4

4. Conversion 5

5. Expression 6

5.1 Primary expressions 6

5.2 Unary operators 6

5.3 Multiplicative operators 6

5.4 Additive operators 6

5.5 Logical Operators 6

5.6 Relational Operators 6

5.7 Image Operators 6

 5.7.1 Predefined Filters 6

 5.7.2 Operators 6

6. Function Definitions 7

7. Statements 7

7.1 Selection Statements 7

7.2 For Loops 7

7.3. Break 7

7.4 Continue Statement 7

7.5 Compound Statements 7

8. Scope 7

 8.1 Static Scoping 7

8.2 Global vs. Local 7

8.3 Forward Declarations 7

8.4 Arithmetic Operator Overloading 7

8.5 Function Name Overloading 8

1. Introduction
Image processing has been an integral part of computer science ever since signal

processing and digitizing analog data became possible. Digitized images lend

themselves perfectly to classical applications of Mathematical Transformations like

Fourier, Laplace et al.

The applications of this fascinating field include Medical Imaging, Computer Vision,

Biometrics, Computer Animation, Digital Cameras, Remote Sensing, Entertainment

etc. Also, the fields of Artificial Intelligence like pattern matching etc. have found a

new application with images. Moreover, we now live in a world where new art

seems to be judged less and less on content and increasingly on groundbreaking

originality. The ability to easily customize photo filters would appear to be an

extremely powerful tool.

The entire process of Image Processing involves many stages, right from image

acquisition, sampling, storing to processing and rendering. We are motivated to

work on that part of Image Processing which involves the application of various

transforms and computations in order to have the desired effect on a digital image.

2. Lexical Conventions

The various kinds of tokens in YAIL are as mentioned below. The tokens are separated

by one or more of the following: comments, spaces, tabs or newlines. The separators

are otherwise ignored. The tokens do not form unique prefixes. This means that a

token is the longest substring of characters that could possibly be legal in the grammar

defined.

 2.1 Comments
 Multi-line comments only. Comments start with /* and end with */. Everything else within

t he comments is ignored.

2.2 Identifiers
An identifier is a name given for a type or function. It can be a sequence of one or more

letters and/or digits. Identifiers must start with a letter, not a digit. Underscores and

special characters are not permitted. Identifiers are case sensitive.

2.3 Keywords
YAIL reserves the following keywords for itself. They may not be used as identifier in

any YAIL program:

int break continue float if else struct for return image color

2.4 Constants
 2.4.1 Integer

 Integer constants consist of decimal integers as a signed sequence of one or

 more digits.

 2.4.2 Float

 Float constants consist of signed decimal real numbers with one and only one

 decimalpoint. The integral part is optional but the fractional part is not.

2.4.3 String

String constants will be any sequence of characters within double quotes. To

have a double quote within a string use the escape sequence „\‟ followed by the

double quote.

3 Data Types
Types define the “kind” of data that can be understood by YAIL. YAIL bases the

interpretation of the identifiers based on their types. The following types are supported

3.1 int
32-bit signed integers are denoted by type int. Range of integer constants is -

2147483648 to 2147483647, defaulting to 0.

3.2 float
64-bit signed decimal point numbers are denoted by type float. Default is 0.0.

3.3 string
Character strings are denoted by type string. Default is empty string “”.

3.4 image
2-dimensional matrix of colors. Its functions include: load, save, display, getWidth and

getHeight. Access the individual pixels by: image_name[horizontal_value,

vertical_value]. Be careful of ArrayIndexOutOfBounds errors.

3.5 color
4-tuple of integer values from 0-255, of the format [red, green, blue, alpha]. The value

of alpha may be omitted during instantiation, defaulting to 0.

3.6 filter
NxM matrix of non-negative floats, representing an image filter. Declared by:

filter f = [[1.0,1.0,1.0],[1.0,1.0,1.0]];

where the innermost values ([1.0,1.0,1.0]) represent the values within a row, where

each number is in a different column, and the inner brackets ([[],[], []]) represent the

different rows, where each set of inner brackets is its own row.

3.7 User defined
Besides the basic types the user can also define the following: structs, arrays,

functions.

 3.7.1 Arrays
 Users can define a collection of elements of the same type by declaring arrays.

 Arrays ensure contiguous memory allocation for the elements within the

array. A general way to declare an array in YAIL is:
 type variablename[size].

 This will allocate memory for size number of variables of type type.

 variablename is any valid identifier.

 3.7.2 Functions
 All functions in YAIL will have the following declarations pattern:
 returntype functionname (args-list) {statements;}

 Here, returntype should be a valid YAIL type, functionname is a valid

 identifier, and args list should be a valid comma separated list of YAIL

types. The args-list can be empty. The function body should contain a valid YAIL

 statement or a group of statements.

4 Conversions

YAIL is strictly typed and does not support any explicit type casting. However lower

numerical types can be expanded into higher ones. Example: A type int can be

assigned to a type float but not vice-versa.

5 Expressions
5.1 Primary expressions
A primary expression can be an identifier, any of the constants defined above, an

expression contained in parentheses.

5.2 Unary operators
YAIL supports one unary operator for negation. It is denoted by a „-‟ sign before an

expression which negates the expression. Only int and float, image and color values

can be negated. Negation of numeric values means multiplying the value by -1.

Negation of an image means replacing the value of each pixel of the image with

max(ColorSpace value) - pixel value. Negation of a color would be similar to negation

of an image.

5.3 Multiplicative operators
The multiplicative operators *, /, and % group left to right.

5.3.1 Multiplication

expression * expression

The binary * operator indicates multiplication. An int can be multiplied with an int

or a float. A float can be multiplied with a float or an int. A int and float

multiplication results in a float value. No other combinations are allowed.

5.3.2 Division

The binary / operator indicates division. The same type considerations as for

multiplication apply.

5.3.3 Modulus

The binary % operator yields the remainder from the division of the first

expression by the second. Both operands must be an int and the result is int.

The remainder has the same sign as the dividend.

5.4 Additive operators
The additive operators + and - group left to right.

5.4.1 Addition/Subtraction

An int can be added to an int or float. A float can be added to a float and int. The

result of addition/subtraction involving float and int is a float.

5.5 Logical Operators
„&&‟ corresponds to logical AND. „||‟ corresponds to logical OR. ‟!‟ corresponds to logical

NOT. „&&‟ and „||‟ are binary operators whereas „!„ is a unary operator. None of the

logical operators are short circuiting.

5.6 Relational Operators
==, !=, < , <= , >, >= are all binary operators.

5.7 Image Operators
There are several Image operators defined in YAIL for quick and easy modification of

images. These operators are listed below-

 5.7.1 Predefined Filters
 image_identifier.grayScale() – to convert a colored picture into a black

 and white (gray scale) image.

 image_identifier.medianFilter() - to apply a median filter to an image

 using the default 3x3 neighborhood.

 image_identifier.contrastChange() – enhances the contrast of an

 image by a default historgram.

 image_identifier.edgeDetection() – to detect edges of an image

 image_identifier.threshold() – All objects in the image will be denoted

 by blackand all the background in the image will be denoted as white.

 5.7.2 Operators
 Image_name.flipImageVertical() – to flip an image on the vertical axis.

 Image_name.flipImageHorizontal() – to flip an image on the horizontal

 axis.

 Image_name @ (angle_value) – to rotate the image by a given positive

 angle in degrees.

 Image_name # filter_name – to find the convolution of an image and a

 filter.

 Image_name1 = Image_name2 – returns 1 if the images are same and 0 if

 they are not the same.

6. Function Definitions

A function in YAIL can be defined as: TYPE ID (args list){ statement }. The args list can

be optionally empty.

7. Statements
Expressions followed by semi colons are statements in YAIL. They are executed in

sequence.

7.1 Selection Statements
Selection statements evaluate conditions and direct control flow appropriately.
if (expression) statement-block

if (expression) statement-block else statement-block

7.2 For Loops
 A valid for statement form is:
for (expression-statement; expression-statement;expression-

statement) statement-block

The first statement is evaluated before the loop begins, the second expression is

evaluated at the beginning of each iteration and, if false, ends loop execution. The third

statement is evaluated at the end of each iteration. Each expression can be multiple

expressions separated by commas.

7.3. Break
The break statement allows the termination of the current for loop and takes

execution to the statement immediately after the for loop.

7.4 Continue Statement
The continue statement can be used only within a for loop. When encountered, the

remaining part of the for loop is ignored and the iteration execution goes to the

condition evaluation of the for loop, possibly for the next iteration.

7.5 Compound Statements
Nested statements are permitted, such that selection and iteration statements can

appear inside of a statement block. All statement blocks must begin with an open

bracket and end with a close bracket.

8. Scope

8.1 Static Scoping
YAIL uses static scoping. That is, the scope of a variable is a function of the program

text and is unrelated to the runtime call stack. In YAIL, the scope of a variable is the

most immediately enclosing block, excluding any enclosed blocks where the variable

has been re-declared.

8.2 Global vs. Local
Global variable: The variables declared outside of the function are global variables,

which will be applied in the whole program except the function where there is a local

variable with the same name as that of the global variable. Global variables will exist

until the program terminates.

Local variable: The variables declared inside of the function are local variables, which

will exist and be applied only inside that function.

Scope conflicts: If there is a global variable whose name is the same with that of the

local variable, then the value of the local variable will be applied inside the function

while the value of the global variable will be applied in all the other part of the program

except that function.

8.3 Forward Declarations
YAIL requires forward declarations for variables and functions. That is, a variable needs

to be declared before it can be referenced, and any function needs to be defined

before it can be invoked.

For example, YAIL generally prohibits the following and will throw an error:
float a;

float b;

float mean;

mean = func(a, b);

...

In this case, the function func() needs to be defined before it is called.

8.4 Arithmetic Operator Overloading
Arithmetic operators (+, -, *, /) are overloaded in YAIL. They can be used in expressions

where integers and floats are mixed, and where an image/filter is mixed with a scalar

value.

The convolution operator (#), however, is not overloaded. It takes exactly an image on

the left and a filter on the right, nothing else.

8.5 Function Name Overloading
YAIL does not allow function name overloading. That is, each function should have a

unique function name, or YAIL compiler will complain. This helps make a YAIL program

more readable and easier to understand, which are two important goals of the

language.

 8.6 Namespaces
 YAIL has only one namespace. Functions, variables, types, and record names, all

 share the same namespace. For example, a variable foo and a function foo() cannot

 coexist in a YAIL program. This helps make a YAIL program more readable and

 easier to understand, which are two important goals of the language.

