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Introduction
Verilog is a very popular hardware description language (HDL) which is widely utilized by the 
electronics hardware design industry.  First invented and used in the early 80s at Automated 
Integrated design Systems, Verilog was put into the public domain and standardized by the 
IEEE in 1995.  This initial public version of Verilog became known as Verilog-95.  The language 
was later expanded in 2001 and 2005 to address deficiencies and add features resulting in 
Verilog-2001 and Verilog-2005, the most recent version.  (A combined hardware description / 
verification language known as SystemVerilog was extended from the 2005 standard but goes 
beyond the scope of this manual.)
 
Despite its popularity, Verilog is infamous for its repetitiveness, strange grammar, and ease 
of bug insertion.  Part of this is a factor of the nature of low-level hardware design.  There is a 
difference between languages meant to be run using gates and latches rather than processors 
and memory.  However, we believe that another part of this simply poor language design and 
can be improved.
 
VeriShort HDL is meant to simplify the Verilog-2005 language to make it easier to read and 
write.  First, we have reduced repetitiveness in accordance with the DRY (Don’t repeat yourself) 
philosophy by simplifying module input/output syntax and instantiation.  Next, we introduced 
some C-language features such as brackets and array-like bus descriptions.  We substantially 
simplified synchronous logic by doing away with ‘always’ syntax and replacing it with simple ‘if’ 
statements.  The list of reserved keywords has been substantially shortened in order to make 
VeriShort completely synthesizable and to remove rarely used features.  Finally, we added 
a standard library of commonly used electronic components like latches, multiplexers, and 
decoders to further reduce the Verilog tedium.
 

Because of the wide adoption of Verilog and the existence of many verifiers and hardware 
synthesizers specific to the IEEE standards, the initial goal of VeriShort will not be to exist as 
a self contained HDL but rather to translate into clean synthesizable Verilog code.  In support 
of these efforts, a translator has been started and is expected to be running by the date of 
December 22nd 2010.



Lexical conventions

Tokens
There are 5 classes of tokens: identifiers, keywords, numbers, operators, and other separators. 
Blanks, tabs, and newlines (collectively, whitespace) are ignored, except when they serve to 
separate tokens.

Comments
The characters /* introduce a comment, which is terminated by the characters */.
The characters // also introduce a comment, which is terminated by the newline character.
Comments do not nest.  Lines marked as comments are discarded by the compiler.

Data types
The primary data type is the bit, which may store the value 0 or 1. A group of bits comprises a 
bus.  All multibit binary values are treated as two’s complement numbers.
 
In for-loops (see the corresponding section), the loop variable is assumed to be a simple integer 
(i.e., natural number).

Identifiers
An identifier is a sequence of characters that represent a wire, bus, register, parameter, or 
module.  An identifier may only include alphanumerical characters or the underscore character 
(_). The first character of an identifier may not be a number.

Keywords
The following identifiers are reserved as keywords and may not be used for any other purpose:
In this manual, keywords are bolded.
 

● case
● clock
● else
● for
● if
● input
● module
● negedge
● output
● parameter
● posedge



● register
● return
● reset
● wire

Numbers
Numbers can be either binary or integer values and are specified as follows:

● A sequence of digits, followed by a radix suffix (b for binary, or d for integer)
● If there is only a single 0 or 1, no suffix needs to be provided because 0 and 1 are 

equivalent in integer and binary
● The characters 0 and 1 are valid binary digits.
● The characters 0-9 are valid integer digits.
● Extended binary numbers are like normal binary numbers, but may also use the 

character ‘x’ as a binary digit. They may only be used in case structures.

Operators
An operator is a token that specifies an operation on at least one operand. The operand may be 
an expression or a constant.
Bitwise operators:

● !
● &
● !&
● |
● !|
● ^
● !^
● >>
● <<

Comparison operators:
● ==
● >=
● <=
● >
● <

Arithmetic operators: 
● +
● -
● *
● /
● %

Assignment operator: 
● =



Sign extension operator:
● ‘ (apostrophe)

The following operators are only valid within a for-loop:
● ++
● -- 

 

Buses
A bus represents a multibit wire. The number of bits in a bus must be determinable at compile 
time. Buses are declared using the syntax data_type bus_name[number_of_bits]; 
Where data_type is either wire, register or assumed to be input or output by its position in 
a module declaration.  The number of bits must be a constant.  From here, any bit in the bus 
may be referred to using the subscript syntax: bus_name[bit_index], where bit_index is a 
constant or expression that yields an integer value less than or equal to the size of the bus.
 
A range of bits in a bus is represented by using the index of the most significant bit in the range, 
followed by the colon character (:), followed by the index of the least significant bit in the range, 
as the subscript. E.g. wires 4-8 would be referred to by bus_name[7:3]. Reversing this order is 
invalid.

Assignment
All assignments in Verishort bind wires and ports to other wires, binary values, or decimal 
values.  These can be done en masse, such as in buses (multi-bit wires) or one by one.

Assigning wires
The most basic assignment is of a single wire to a single bit value:
 
wire w1 = 0;
wire w2 = !w1; // w2 == 1
 
A bundle of wires can be assigned to a multi-bit value, as long as the number of bits matches 
the number of wires in the bundle:
 
wire w3[5] = 01010b; // assigning a binary value
wire w4[4] = 10d; // assigning a decimal value
wire w5[10] = {1,8{0},1}; // 1000000001b using concatenation
 
//This does not work and will result in an error because the left hand side 
and the right hand side are not the same size.
wire w6[10] = 10b; 
 



Note that the number of bits must always be specified for more than one bit.
 
Subsets of buses can be assigned:
 
wire w6[5];
w6[3:0] = 4d;
w6[4] = 1b; // w6 == 10100b
 
The two sides of an assignment must have the same number of bits.
The assignment operator returns the right operand and associates from right to left, making the 
following possible:
wire w7[5], w8[3];
w7[2:0] = w[8] = 010b;

Binding ports
Ports are bound to wires when instantiating a module by setting the module’s parameter name 
equal to the wire or value to which it should be bound.  Like assigning wires, these bindings can 
be in whole or in part. The value of a port, or part of a port, that has not been bound is assumed 
to be 0.
 
module m1(input in1[5], in2; output out[5]) { ... } // declared somewhere
// now, inside of a calling module
wire w7[5];
m1(in1[3:0] = w6[4:1], in2 = 1b; out = w7);

Expressions & Operators
The physical logic of VeriShort is described using expressions which are made up of one or 
more operators and operands.  An operand can be either a single bit or a bus.  All expressions 
will return a bit or bus that is then be assigned to a wire or output (see Assignment) or returned 
in an output.  This section will detail operators ordered from the most basic building blocks to 
complex operations.
 

Concatenation, Replication, Splitting
To place two or more bits or buses together into a single bus, the concatenation syntax is used.
wire a = 0;
wire b = 1;
wire c[2] = 01b;
//{a,b,c,01b} results in 010101b
wire a1 = 1;
wire b1[4];



b1 = {4{a1}}; //results in 1111b, which is equivalent to {a1,a1,a1,a1}

Bitwise
Bitwise operators represent the primitive AND, OR, and NOT gates.  All other logical are a 
combination of these operations.  Every bitwise operation with the exception of the NOT gate is 
a binary operation in the “operand operation operand” style with both operands being the same 
size which is also the size of the return value.  A NOT operation will return the same number of 
bits as its single operand.
 
Primitive bitwise operators ordered by precedence.
 
wire a = 01b;
wire b = 11b;

Operator Example Result

NOT !a 10b

AND a&b 01b

OR a|b 11b

 
Full range of bitwise operators:

Operator Example Equivalency Result

NAND a!&b !a & !b 00b

NOR a!|b !a | !b 10b

XOR a^b (!a & b) | (a & !
b)

 

XNOR a!^b (!a | b) & (a | !
b)

 

 

 

Parenthesis
Parenthesis has the highest precedence.
1|(1&0) //1
(1|1)&0 //0
 

Reduction
Reduction operators take only a single operand on their right hand side (a bus) and result in a 



single bit result.
 
wire a[3] = 010b;

Operator Example Equivalency Result

AND &a example[0] & example[1] & example[2] -

NAND !&a !example[0] & !example[1] & !example[2] 0

OR |a example[0] | example[1] | example[2] 1

NOR !|a !example[0] | !example[1] | !example[2] 1

XOR ^example example[0] ^ example[1] ^ example[2] 1

XNOR !^example !example[0] ^ !example[1] ^ !example[2] 1

 

Arithmetic
Arithmetic operators are shorthand for common equivalent  but complex operations.  They 
operate on two bits or buses which do not have to be the same size.  They will return a bit or 
bus.  All operations are done in two’s complement.
 
In general, the bus that receives the result must contain enough bits to hold all bits in the result, 
or the result of the arithmetic operation may be undefined.
 
wire e0[3] = 011b //equivalent to 3d and can be expanded to 0011b
wire e1[3] = 111b //equivalent to -1d and can be expanded to 1111b
wire e3[3];
wire e4[4];

Operator Example Notes Result

Plus e3=e0+e1
e4=e0+e1

If there is overflow and the bus 
holding the result has insufficient 
bits, the result of the operation may 
be incorrect.
 
If the resultant has n bits and the 
addends fewer, the addends will 
both be extended to n bits before 
addition occurs.

e3=010b
e4=0010b

Minus e3=e0-e1
e4=e0-e1

Equivalent to e0+{!e1[n],e1[n-
1:0]}.

e3 = 100b
e4 = 0100b

Multiplication e0*e1 Returns a bus that is n+m-1 long 10101b



Division e0/e1 not implemented  

Modulus e0%e1 Returns a bus that is n long where 
n is the size of the first operand

0b11

 

Shifting
Shifting operations will literally shift the entire bus to the left or right and will discard the bits 
shifted off the end.
 
e0 = 0111b; //7d
e1 = 1111b; //-1d

Operator Example Note Result

Left-shift e0<<2
e1<<2

Left shift will 
always fill with 
zeros

1100b //-4d
1100b

Right-shift e0>>2
e1>>2

Right shift will 
always fill 
with the most 
significant bit 
to preserve sign

0001b //1d
1111b //-1d

 

Sign extension
The sign extension operator sign-extends the right operand to the number of bits specified by 
the left hand side operand in decimal. The left operand must be determinable at compile time.
Attempts to specify a number of bits that is smaller than the number of bits in the right operand 
is a syntax error. The operation is done in two’s complement.
 
e0 = 0111b; //7d
e1 = 1111b; //-1d

Operator Example Note Result

Sign extension 8’e0
8’e1

Left hand side is 
always a decimal 
number.

00000111b
11111111b

 

 



Comparison
Comparison operators will compare the values of two buses which do not need to be equally 
sized and will return a one bit true or false result
 
e0 = 0111b; //7d
e1 = 0111b; //7d
e2 = 1111b; //-1d

Operator Example Result

Less than e0 < e1 0

Less than or equal to e0 <= e1 1

Greater than e0 > e2 1

Greater than or equal to e0 >= e2 1

Equal to e0 == e1 1

Not equal to e0 != e1 0
 

 

Precedence and associativity

Operators, in order of decreasing precedence Associativity

++ -- (postfix, for-loops only)
 
 !   +   -  & !& ^ !^ | !|(unary) ’ (sign extension) ++ -- (prefix, for-loops 
only) 
 
  *     /     % 
 
  +     - (binary) 
 
  <<    >> 
 
  <     <=    >    >= 
 
  ==    !=   
 

left to right
 
right to left 
 
 
left to right 
 
left to right 
 
left to right 
 
left to right 
 
left to right 
 



  &     !& (binary) 
 
  ^     !^ (binary) 
 
  |     !| (binary) 
 
 =

left to right 
 
left to right 
 
left to right 
 
right to left

 



Declarations
There are three types of declarations in Verishort: wires, for passing values between modules; 
registers, for storing values between clock cycles; and modules, blocks of Verishort code 
offering specific functionality.
 

Identifiers
Identifiers are user-friendly names, much like variable names in most programming languages.  
They must start with an upper- or lower-case letter followed by any sequence of letters, 
numbers, and underscores.  No other characters are allowed in identifier names.
 

Wire declarations
Wires can be single or multi-bit (buses/bundles).  They are declared using the keyword wire 
followed by a space, then an identifier, then an optional number inside square brackets.  The 
number inside the brackets is the number of bits to be used for the bus, using 0-indexing.  The 
MSB is at the highest bit value, i.e., at index 15 for a 16-bit wire.  If the brackets and enclosed 
number are omitted, the wire is assumed to hold a single bit.
 
wire w1; // single bit
wire w2[5]; // five bits with MSB at index 4, LSB at index 0
 
In addition, the declared wires can take values immediately during the declaration.  Following 
the identifier (or optional bracketed expression) another space, an equals sign, a space, a 
binary, decimal, or logical value can be used:
 
wire w3 = !w2[0];
wire w4[3] = 4d;
 
The shorthand for digit repetition can also be used:
wire w5[16] = {1,14{0},1};
 
Subsets of buses can be assigned:
wire w6[8] = w5[0:7];
 
Equivalently:
for(i = 0; i < 8; i++) {
  w6[i] = w5[i];
}

 



Register declarations
Registers are declared exactly like wires but with the register keyword.  The main difference 
between registers and wires are that registers can be reassigned at will at any point in your 
code.  They can be used to store values between clock cycles, for example.

Module declarations
Modules are analogous to classes in Java.  Modules allow code to be grouped to offer specific 
functionality.
 
They are declared with the module keyword, followed by an identifier, followed by a 
parenthesized expression.  The parenthesized expression contains a comma-separated list 
of input parameters preceded by the input keyword, followed by a semi-colon, followed by a 
comma-separated list of output parameters preceded by the output keyword.  The body of the 
module (discussed below) followed inside braces
 
module m1(input in1, in2, in3[3]; output out[5]) { ... }
 
In addition to the user-specified inputs and outputs (see the Assignment section for information 
on binding parameters), each module has an implicit reset input (keyword reset) and clock 
input (keywords posedge and negedge).
 
Modules can be declared in any order but all code must reside in one file.  Modules cannot be 
nested, i.e., one module cannot be declared inside of another module.  However, a module can 
be instantiated (Instantiating a module below) inside of another module as long as there are no 
infinitely recursive references.

Building a module
A module is a series of declarations, assignments, logic, and conditional statements. 
All declarations in a module must appear at the beginning of the module, before any other 
statements.
Here is a brief example:
 
module m2(input enable, in[4]; output out[4]) {
  register r[4] = 0d;
  if(posedge) {
    if(reset) {
      r = 0000b; // equivalent to r = 0d;
    }
  }
  else if(enable == 1b) {
    r = in;



    out = r;
  }
}
 
This is a simple four-bit latch. On every positive clock edge, if the enable bit is set to 1, the 
output will be set to the input. If the enable bit is set to 0, the output will remain unchanged. 
However, if the module's reset bit is 1 when the clock edge is detected, the register values and 
output will be reset to 0d.
 
This module is reusable. Here is an example of instantiating the module from within another 
module:
 
module m3(input check1, check2, in[4]; output out[4]) {
  wire enabler, resetter;
  m2(enable = enabler, in = in; out = out; reset = resetter);
 
  if(posedge) {
    enabler = check1;
    resetter = check1 & check2;
     
  }
}
 
The enable bit of module m2 is 1 if input check1 in module m3 is 1. If both check1 and check2 
are 1, then the module m2 is reset. check2 on its own does nothing.
 
Notice that though reset is not listed as an input of module m2, it is implicit; it can be referred to 
by keyword reset.
 
In addition to binding wires to outputs, subsets of outputs can be returned as in traditional 
languages.  To indicate that a module returns n bits, put the number of bits to be returned (as 
in a wire declaration) in square brackets after the identifier, including for a single bit returned, 
unlike wires.  
 
If you wish to return all or a subset of outputs (replacing or in addition to the normal outputs via 
binding), list them after the return keyword anywhere in a block.  A single block may not have 
multiple return keywords. 
 
module m10[5] (input in[5]; output out[3]) {
  ...
  out = ... ;
  return {out,in[1],in[2]};
}
These can then be used as follows:



wire w11[5] = m10(...);
 

Statements
A semicolon is necessary after a statement in Verishort.  Because whitespace has no effect, it is 
necessary to have semicolons to signal the end of a statement. 
 
Examples from previous sections:
wire w3 = !w2[0];
wire c[2] = 01b;
 
For some statements, such as connectivity, a statement is inherently acknowledged through the 
brackets.
 
Example from previous sections:
wire a = 1;
wire b[4];
wire c[16] = {0{b},0,0,10b,4{0,a},b} // results in 0010010101011111b
b = {4{a}}; // results in 1111b
 

Conditional statements
Conditional statements work just as they do in the C programming languages with if and else.  
Following an if, an expression is placed within parenthesis.  This expression must evaluate to 
a bit value.  An expression returning 1 evaluates as the equivalent of ‘true’ and 0 as ‘false’.  An 
else block attaches itself to the closest else-less if block. 
 
wire gate = 1;
wire b[2];
if (gate & 1b > 0b) {

b = 10b;
}

else {
b = 01b;
}

 
The power of conditional statements come in their ability to use the clock.  For example, an 
incrementer:
 
register a[8] = 0;
if (posedge) {

a = a + 1b;



}
 
Asynchronous and synchronous logic can also be combined together seamlessly:
 
wire gate = 1;
register a[8] = 0;
if (posedge & gate) {

a = a + 1b;
}

Case/switch structures
Case structures use the case keyword and work similarly to the switch statement in C.  The 
main difference is that the case structure in Verishort does not provide fall-through or default 
behavior.
 
This is especially useful when the user wants to test for conditions on certain bits but doesn’t 
care about the value of other bits.  Those bits can be replaced with x instead of 1 or 0.
 
Inside of a case block, the condition is followed by a colon, then followed by the resulting 
statement, followed by a semicolon.
 
If-else statements and for-loops cannot appear inside case structures.
 
wire w[3] = ... // also assume a 3-bit output ‘out’
case(w) {
  1x1b : out = 111b;
  x00b : out = 000b;
}

For-loops
For loops in Verishort are different from for loops in C.  Instead of being used to repeat a task 
multiple times, they are instead used to repeat tedious code.  For example, to wire every other 
bit of the wire ‘a’ to a module and output the result to b:
 
wire a[32];
wire b[16];
for (i = 0; i < 16; i++) {

example_module(in=a[i*2],out=b[i]);
}
 
This code has the effect of creating 16 example_modules which are all wired.

 



Scope
VeriShort tends to be a linear language, with very little dependence on lexical scope and 
linkage. That being said, VeriShort still limits scope for certain conditions.  Importantly, data 
declared within one module is not available outside of that module.  Similarly, data declared 
within blocks (between the brackets in ‘if/else’ blocks and ‘for’ loops) is not available outside of 
those blocks.
 

Preprocessor
Like the #define directive in C, the parameter keyword can be used in VeriShort to replace 
numbers before compile time.  For example, in the following code:
 
parameter const = 1010b;
wire c[4] = const;
 
The const identifier is literally replaced with the number 1010b before compile time.  As with any 
assignment, notice that c contains the correct number of bits to hold the constant.
 
To reduce the repetitiveness of Verilog, we automatically assume clock and reset ports in all 
modules that use their functionality.  So, a clock input port is included in any module that uses 
the posedge or negedge keywords.  Similarly, a reset input port is included in any module that 
uses registers to the effect that asserting a reset will set all registers back to 0.  These ports can 
be overloaded by simple specifying a different value for them.  This is useful for gating the clock 
like in the following example:
 
module gater(input gate, i; output o) {

add_on_clk(in=i;out=o);
clock = clock & gate;
}

 
Assuming that the add_on_clk module actually uses a clock, this also has the effect of changing 
the clock defintion in the add_on_clock and any other module instantiated within the gater 
module.

Standard Library Modules
Because of the repetitiveness of many aspects of hardware design, the Verishort language 
includes standard modules of many commonly used electronic components in the hope of 
reducing some tedium. The definitions given below are pseudo-module declarations. The 
appropriate value of n will be selected at compile time.  Note that, like any module port, clk and 



reset do not need to be specified.  By Verishort convention, a clk is explicitly assumed in all 
modules that use the posedge/negedge keywords.  A reset is explicity assumed in all modules 
that use the reset keyword.
 

Latches 
module SRL[n] (input S[n], reset[n], E[n]; output Q[n], QNOT[n])
module JKL[n] (input J[n], K[n], E[n]; output Q[n], QNOT[n])
module DL[n] (input D[n], E[n]; output Q[n], QNOT[n])
module TL[n] (input T[n], E[n]; output Q[n], QNOT[n])
 
Flipflops 
module DFF[n] (input D[n], S[n], reset[n], clk; output Q[n], QNOT[n])
module TFF[n] (input T[n], clk; output Q[n], QNOT[n])
module JKFF[n] (input J[n], K[n], clk; output Q[n], QNOT[n])

Multiplexers
module MUX[1] (input IN[n],SEL[log2 n]; output OUT)
module DEMUX[n] (input IN[n], SEL[log2 n]; output OUT[n])

Decoders
module DECODE[n] (input IN[log2 n]; output OUT[n])
module ENCODE[log2 n] (input IN[n]; output OUT[log2 n]) //Priority Encoder


