

IPCoreL
Programming Language Reference Manual

Phillip Duane Douglas, Jr.

11/3/2010

The IPCoreL Programming Language Reference Manual provides concise information about the grammar,
syntax, semantics, and functionality of this network programming language. The intent of IPCoreL is to provide
an intuitive network programming experience to beginner, novice network enthusiasts and professionals.

1 Introduction to IPCoreL

The IPCoreL programming language reference manual contains a summary of the grammar, syntax,
semantics, and functionality of the programming language. IPCoreL provides basic arithmetic
operations, conditional statements, iterative statements, relational expressions, declarations and
declarators, and type specification. The main feature of IPCoreL is the ability of the language to
perform network calculations, socket calls, and transmission of custom data packets. The intent of
IPCoreL is to provide beginner and novice network programmers an intuitive, easy-to-implement
programming language with none of the difficulties found in other languages, e.g. C, Java, and Python.
Some of the basic operations of IPCoreL are listed below.

♦ Network Performance Simulation
▪ Throughput Calculation
▪ Latency Calculation
▪ Jitter Calculation
▪ Round Trip Time (RTT) Calculation

♦ Packet Creation
▪ IPv4 Header
▪ IPv6 Header
▪ User Datagram Protocol (UDP) Header
▪ Transmission Control Protocol (TCP) Header

♦ Socket Calls and data packet transmission using OCaml Unix module

The remainder of this manual contains information on the lexical convention, syntax, semantics,
expression usage, statements, declarations, and grammar of IPCoreL.

2 Lexical Conventions

This section introduces the fundamental elements that makeup a IPCoreL program. Lexical elements,
or tokens, are utilized to construct statements, definitions, and declarations, which are required to
construct complete programs.

2.1 Tokens

A token is the smallest element of the IPCoreL programming language and are essential in the
compilation of an IPCoreL program. The parser of IPCoreL is designed to recognize and accept the
following types of tokens:

♦ Identifiers
♦ Comments
♦ Whitespace
♦ Punctuations
♦ Operators

♦ Identifiers
♦ Keywords
♦ Constants
♦ Ambiguities

2.1.1 Identifiers

Identifiers are represented in IPCoreL as sequences of letters, digits, and ‘_’ (underscore character).
Identifiers can only begin with a letter and then can be followed with a sequence of letters, digits, or
‘_’. If a ‘_’ is used to start an identifier, an error in compilation will result. The following represents the
accepted types of identifiers:

identifier → letter [letter | digit | ‘_’]

letter → [‘A’-‘Z’ ‘a’-‘z’]

digit → [‘0’-‘9’]

2.1.2 Comments

IPCoreL comments are delimited with the following sequence of characters /* and //, with no
intervening blanks. Staying consist with the nature of comments in programming languages, IPCoreL
comments are treated as blanks during lexical analysis. Comments do not occur inside string or
character literals and nested comments are handled efficiently in IPCoreL.

2.1.3 Blanks/Whitespace

The following character constants will be handled by the lexical analyzer as blanks, or whitespaces:

♦ Space
♦ Newline character constant
♦ Carriage return
♦ Horizontal tabulation

Blanks separate adjacent identifiers, literals, and keywords, which requires them to be ignored by the
lexical analyzer to lessen confusion for the parser of IPCoreL.

2.1.4 Punctuators

The following character constants will be handled by the lexical analyzer as punctuation input symbols:

♦ Left parentheses → ‘(‘
♦ Right parentheses → ‘)’
♦ Left brace → ‘{‘
♦ Right brace → ‘}’
♦ Comma → ‘,’

♦ Semicolon → ‘;’
♦ Single quote → ’
♦ Double quote→ “

2.1.5 Operators

IPCoreL includes operators that are commonly found in other proven programming languages. These
operators specify an evaluation to be performed on one of the following:

♦ One operand (unary operators)
♦ Two operands (binary operators)

Unary Operators

The following tokens represent the unary operators of IPCoreL (w/ left-right associativity):

♦ ++ (postfix/prefix incrementation operator)
♦ -- (postfix/prefix decrementation operator)
♦ ! (prefix equality operator)
♦ () (function call member initialization)

Binary Operators

The following tokens represent the binary operators of IPCoreL (w/ left-right associativity):

♦ Integer Operators
▪ ** (exponentiation)
▪ + (addition)
▪ - (subtraction)
▪ * (multiplication)
▪ / (division)
▪ % (modulo)

♦ Floating-Point Operators
▪ **. (floating-point exponentiation)
▪ +. (floating-point addition)
▪ -. (floating-point subtraction)
▪ *. (floating-point multiplication
▪ /. (floating-point division)

2.1.6 Prefix, Postfix and Infix Symbols

The following represent prefix, postfix, and infix symbols in IPCoreL arithmetic and logical operations:

Infix-symbol → [= | < | > | <= | >= | == | != | && | || | + | +. | - | -. | * | *. | / | /. |
% | ** | **.]

Prefix-symbol → [- | ++ | -- | !]

Postfix-symbol → [++ | -- | ()]

2.1.7 Keywords

IPCoreL contains keywords, whose usage as regular identifiers will result in compilation errors, that
define variable types, conditional statements, iterative statements, and standard functions in the
programming language. Below are the reserved keywords of IPCoreL.

 string char int float if

else elseif while for bool

The following operators are considered keywords as well :

 + +. - -. *

 *. / /. % =

 ++ -- ** **. ()

< <= > <= ==

!= && || !

2.1.8 Constants

IPCoreL contains constants that define integers, floating-point, character constants, and string literals.

Integer Constants

Integer constants of IPCoreL are defined as constants consisting of a sequence of digits. Variables, or
identifiers, defined as type int will be capable of holding integer values only. Assigning non-integer
values to variables, or identifiers, of type int will result in compilation errors due to incorrect syntax.

The following characters are legal integer constants:

0 1 2 3 4 5 6 7 8 9

Floating-Point Constants

Floating-point constants are accepted in IPCoreL to provide representation for numbers that would be
too large or too small to be represented as integers. These constants are in general represented

approximately to a fixed number of significant digits and scaled using an exponent. The following
provides information on how exactly floating-point constants are represented in IPCoreL: 0.1, 1.0,
2.95, 3.41569.

Character Constants

Character constants are delimited by single quote characters. The two single quotes enclose either one
character different from ‘ and \, or one of the escape sequences, \n (newline constant), \r (carriage
return)or \t (horizontal tabulation).

The following characters are legal character constants:

 a b c d e f g h i j k l m

 n o p q r s t u v w z A B

 C D E F G H I J K M L N O

P Q R S T U V W X Y Z 0 1

2 3 4 5 6 7 8 9 _

String Literals

String literals are delimited by “ (double quote) characters. The two double quotes enclose a sequence
of characters constants, different from “ and \, or escape sequences from the character constants
described above.

2.1.9 Ambiguities

Ambiguities in the lexical conventions of IPCoreL are resolved by referencing the “longest-match”
rule:

When a character sequence can be decomposed into two tokens in several different ways, the

decomposition retained is the one with the longest first token.

3 IPCoreL Syntax

The syntax of IPCoreL was designed to provide simplicity to novice network programmer. The set of
rules, which define the combinations of symbols accepted as correct by the IPCoreL compiler, will be
referenced through this document in the following format:

♦ Syntactic categories are identified by the usage of the italic type
♦ Literal words and characters are identified in the typewriter style.

Example:

stmt → if expr then stmt
| if expr then stmt else stmt
| expr

4 Conversions

Many programming languages available today offer the conversion, or coercion, of the value of an
operand from one data type to another. This section will explain the coercion functions available and
the results to be expected from the coercion.

4.1 Integer to String Literal Coercion

IPCoreL offers the coercion of integer values to string literals using the following function:

♦ int_to_string(arg)

This function takes an argument of type integer and returns as a result a string literal comprising of the
integer value enclosed in double quotes, e.g. int_to_string(123) → “123”.

4.2 String Literal to Integer Coercion

IPCoreL offers the coercion of string literals to integer values using the following function:

♦ string_to_int(arg)

This function takes a string literal as an argument and returns as a result an integer comprised of the
contents of the string literal within the double quotes, e.g. string_to_int(“ 123”) → 123

4.3 Floating-Point to String Literal Coercion

IPCorel offers the coercion of floating-point values to string literals using the following function:

♦ float_to_string(arg)

This function takes an argument value of type floating-point and returns as a result a string literal
comprising of the floating-point value enclosed in double quotes, e.g., float_to_string(1.23) →
“1.23”.

4.4 String Literal to Floating-Point Coercion

IPCoreL offers the coercion of string literals to floating-point values using the following function:

♦ string_to_float(arg)

This function takes a string literal as an argument and returns as a result a floating-point value
comprised of the contents of the string literal within the double quotes, e.g.
string_to_float(“1.23”) → 1.23

5 Expressions

IPCoreL expressions consist of a combination of explicit values, constants, variables, operators, and
functions that operate under the rules of precedence and of association. Values can be of type int, float,
string, or char. IPCoreL affords for a multitude of expressions including postfix, unary, incrementation,
decrementation and operational expressions.

5.1 Primary Expressions

Primary expressions within IPCoreL consist of identifiers, variables defined as constants, strings,
expression, and (expression).

5.2 Postfix Expressions

Postfix expressions in IPCoreL groups operators from left to right. The following outlines the
utilization of postfix expressions within IPCoreL

expression:

expression
expression[expression]
expression(expression-opt)
expression = variable-identifier
expression = integer-lvalue | float-lvalue | character-lvalue | string-lvalue
expression++
expression--

expression-list:
 expression
 expression-opt, expression

5.3 Unary Operators

IPCoreL groups operators that unary in nature from right-to-left. Aside from parenthesis pairs,

incrementation and decrementation operators, the only other unary operator is ‘-‘ . The following
defines the handling of unary expressions within IPCoreL.

unary-expression:
 expression
 ++unary-expression
 --unary-expression
 unary-operator expression

unary-operator: - !

5.4 Array References

A postfix expression followed by an expression in square brackets, postfix-expression[expression-opt],
is a postfix expression denoting a subscripted array reference.

5.5 Function Calls

A function call is an expression containing a simple type name and a parenthesized argument list. The
argument list can contain any number of expressions separated by commas. The function call may also
be empty. The type of a function call expression is the return type of the function. This type can either
be of primitive type or of type void.

Arguments of a function call are referred to as function arguments. These function arguments are
expressions used within the parentheses of a function call. Function parameters make up the function
arguments within a function call.

IPCoreL handles function calls in the following manner:

function-identifier(argument-list)
function-identifier()

5.6 Postfix Incrementations

IPCoreL expresses postfix incrementation expressions in the following manner using the postfix
operator, ++.

unary-expression++

The value of the postfix-expression is the value of the operand. After the value is noted, the operand is
incremented by 1. The operand must be of integer value in order for the postfix-expression to compile
properly.

5.7 Prefix Incrementations

IPCoreL expresses prefix incrementation expressions in the following manner using the prefix
operators, ++. Prefix operators are handled in the same manner as postfix operators.

++unary-expression

The value of the prefix-expression is the value of the operand. After the value is noted, the operand is
incremented by 1. The operand must be of integer value in order for the prefix-statement to compile
properly.

5.8 Postfix Decrementations

IPCoreL expresses postfix decrementation expressions in the following manner using the postfix
operator, --.

unary-expression--

The value of the postfix-expression is the value of the operand. After the value is noted, the operand is
decremented by 1. The operand must be of integer value in order for the postfix-expression to compile
properly.

5.9 Prefix Decrementations

IPCoreL expresses prefix incrementation expressions in the following manner using the prefix
operators, --. Prefix operators are handled in the same manner as postfix operators.

--unary-expression

The value of the prefix-expression is the value of the operand. After the value is noted, the operand is
decremented by 1. The operand must be of integer value in order for the prefix-statement to compile
properly.

5.10 Multiplicative Operators

IPCoreL multiplicative operators, * and /, are grouped from left-to-right. The following defines how
IPCoreL handles multiplicative operators:

multiplicative-expressions:
 multiplicative-expression * unary-expression
 multiplicative-expression / unary-expression
 multiplicative-expression ** unary-expression
 multiplicative-expression *. unary-expression

 multiplicative-expression /. unary-expression
multiplicative-expression **. unary-expression

The multiplicative operators are of arithmetic type and can handle both integer and floating-point types.
The result of

5.11 Additive Operators

The additive operators + and – possess left associativity and have the same level of precedence. If and
only if expressions and operands are of arithmetic type can they be used with additive operators. The
arithmetic types consist of integer and floating-point. The following defines how IPCoreL handles
additive operators:

additive-expression:
 multiplicative-expression
 additive-expression + multiplicative-expression

additive-expression +. multiplicative-expression
additive-expression - multiplicative-expression
additive-expression -. multiplicative-expression

5.12 Relational Operators

Relational operators in IPCoreL group left-to-right and evaluate to either 0 or 1. The following details
the manner in which relational operators are handled in IPCoreL:

relational-expression:

relational-expression < unary-expression
relational-expression > unary-expression
relational-expression <= unary-expression
relational-expression >= unary-expression

The operators <, >, <=, and => all yield 0 if the specified relation is false and 1 if the relation holds
true. The type of the result is int.

5.13 Equality Operators

IPCoreL handles == and the!= operators in the same manner as relational operators, except for their
lower precedence. Equality operators follow the same rules as relational operators.

equality-expression:

relational-expression
equality-expression != relational-expression
equality-expression == relational-expression

5.14 Logical AND/OR Operators

The && and || operators group left-to-right in IPCoreL. The && operator returns 1 if both its operands
compare unequal to zero, and 0 otherwise. The same rule applies to the || operator.

logical-expression:
 logical-expression && expression
 logical-expression || expression

5.15 Assignment Operators

IPCoreL uses several assignment operators to assign values to identifiers. All assignment operators
group left-to-right

expression:
 expression = unary-expression
 expression -> function-identifier(parameter-list)

The = operator assign values to identifiers. The -> operator is used in IPCoreL to create IP headers and
IP packets.

5.16 Sequences

A pair of expression separated by a comma is evaluated left-to-right in IPCoreL, with the value of the
left expression being ignored. The type and value of the result are the type and value of the right
operand. All side effects from the evaluation of the left operand are completed before beginning the
evaluation of the right operand.

expression-list:
 expression
 epression-list, expression

6 Declarations

A declaration in IPCoreL specifies the interpretation given to a particular identifier. IPCoreL contains
ability to declare functions and variables, and have the following form:

function-decl:
 function-type-specifier function-identifier (formal-opt) {variable-decl-list, statement-list};

variable-decl-list
 empty-variable-list

 variable-decl-list, variable-decl

variable-decl:
 variable-type-specifier variable-identifier;

Declarators in the formal-opt contains the optional identifiers that are being declared in the
declarations. Declaration specifiers consist of the following:

formal-opt:
 empty-formal-list
 formal-list

formal-list:
 variable-identifier
 formal-list, variable-identifier

IPCoreL utilizes few *-type-specifiers, which consist of the following:

function-type-specifier:
 void

 int

 float

variable-type-specifier:
 int

 float

 char

 string

 bool

6.1 Declarators

Declarators are components of a declaration that specify names of objects or functions within an
IPCoreL program. These components also identify whether a named object is a variable or array. When
applied to functions, declarators work with the type specifier to explicitly specify the return type of a
function.

IPCoreL arrays may be declared using the following syntax example:

float x[10]; /* empty array of type float with 10 elements */

int x[3] = {1, 2, 3}; /* array of type int with 3 elements initialized to 1, 2, and 3
 respectively*/

string str = “Hello World”;

string str = (“Hello World”);

6.2 Function Declarators

IPCoreL affords programmers the ability to define functions containing a function declaration and the
body of a function.

function-decl:
 function-type-specifier function-identifier (formal-opt) {variable-decl-list, statement-list}

Function declarations in IPCoreL must follow the following rule in order for a program to properly
compile:

♦ Only one type specifier is required for a function declaration. The type specifier
determines the type of value return after execution of the function is complete.

♦ A function declaratory must consist of a function name followed by a parenthesized list
of optional parameters

♦ If a function is declared of type int or float then it must be terminated with a return
expression;

Examples of function declarations:

int f(int a, int b) {
 return a + b;
}

or

void f(a, b) {
 a = a + b;
}

or

int x = 1;

void f() {
 print x;
};

The syntax of parameters is the following:

parameter-list:
 parameter
 parameter-list, parameter

parameter:
 expression

6.3 Initialization

When initially defined, declarators have the option of specifying the initial value of the objects being
declared in the program. The grammar of IPCoreL initialization is the following:

expression:
 expression = expression[expression-opt]
 expression = (expression)
 expression = expression
 expression -> function-identifier(parameter-list)

7 Statements

Statements are executed in sequence in IPCoreL, and are done so for their effect. The grammar of
IPCoreL statements is:

statement:
 expression-statement
 block-statement
 conditional-statement
 iterative-statement

7.1 Expression Statement

Majority of IPCoreL programs consist of expression statements that are either assignments or function
calls. All side effects from the expression are completed before the next statement is executed in the
program. Expression statements take the following form in IPCoreL:

expression-statement:
 empty-expression
 expression

7.2 Block Statements

Block statements, or compound statements, are formed by grouping several statements together in a
“block” bounded by {}. The grammar of block statements in IPCoreL is the following:

block-statement:
 {statement};
 {statement-list, statement};

If identifiers in the expression-list are in scope outside the block, the outer declarations are suspended
within the block statement. The following rule applies to all block statements:

An identifier may be declared only once in the same block. Declarations consisting of the same
identifier within the same block will result in compilation errors.

7.3 Conditional Statement

IPCoreL conditional statements resemble conditional statements used in other programming languages,
e.g., C, C++, Java, and Python. The following describes the grammar of IPCoreL conditional
statements:

conditional-statement:
 if(expression){statement};
 if(expression){statement} else{statement};
 if(expression){statement} elseif(expression){statement} else{statement};

If using if statements in programs, the expression must be of arithmetic type. The expression is
evaluated and if it compares unequal to 0, the first substatement is executed. In the second form, the
second substatement is executed if the expression is equal to 0.

The last conditional statement, containing elseif keyword, is a combination of if and else and
extends the if statement to execute a different statement in case the original if expression evaluates to
false. The elseif statement will execute an alternative expression only if the elseif conditional
expression evaluates to true.

7.4 Iterative Statements

The grammar of IPCoreL iterative, looping, statements is the following:

iterative-statement:
 while(expression){statement};
 for(expression-opt; expression-opt; expression-opt) {statement};

The while loop consists of a test that occurs before each execution of the statement within the iterative
statement. In the for statement, the first expression is evaluated once and specifies the initialization for
the loop. The second expression must be of arithmetic type and it is evaluated after before each
iteration. If the second expression becomes equal to 0, the for loop is terminated. The third expression
of the for loop is evaluated after each iteration, specifying a re-initialization for the loop.

If users of IPCoreL wish not to use for loops, the following is its equivalent using a while loop.

 for(expression-opt; expression-opt; expression-opt) {statement};

expression1;
while(expression2){
 statement;
 expression3;
}

8 IPCoreL Functions

IPCoreL affords programmers certain functions that calculate network behavior. The following
grammar describes the functions that are included in IPCoreL:

Network calculation functions:

throughput(parameter-list);
jitter(parameter-list);
latency(parameter-list);
rtt(parameter-list);

Header creation functions:
 header(paramater-list);

Packet creation:
 packet(parameter-list);

Socket functions:
 opensock(parameter-list);
 sendmsg(parameter-list);
 recvmsg(parameter-list);

8.1 Function Definitions

The following defines native functions provided in the IPCoreL Programming Language.

throughput: performs throughput calculation based on user-defined parameters listed in the
 function call.

♦ Throughput is the average rate of successful message delivery over a
communication channel

jitter: performs jitter calculation based on user-defined parameters listed in the function
 call.

♦ Jitter is the time variation of a periodic signal in telecommunications.
Jitter may be observed in characteristics such as the frequency of
successive pulses, the signal amplitude, or phase of periodic signals.

latency: performs latency calculation based on user-defined parameters listed in the
 function call.

♦ Latency is the measure of time delay experienced in a communication
network.

rtt: performs round-trip time calculation based on user-defined parameters listed in
 the function call.

♦ RTT (Round-trip Time) is the measure of time taken for a packet to reach

each its destination from its source.

header: creates an IPv4, IPv6, UDP, or TCP header based on user-defined parameters
 listed in the function call.

♦ Headers are supplemental data placed at the beginning of an IP packet
containing data to be stored and/or transmitted through a communication
network.

packet: creates a custom IP packet based on user-defined parameters, containing headers,
 listed in the function call.

♦ Packets are formatted units of data that are traversed though
communication networks. Packets created in IPCoreL support IPv4 and
IPv6.

opensock: makes a socket call when functional is made; socket type is based on user-
 defined parameters listed in the function call.

sendmsg: packages the IP packet created with packet function and transmits the packet
 outside the Network Interface Card (NIC) of user's PC.

recvmsg: receives incoming IP packets unpacks the datagram for information processing
 based on user parameters listed in function call.

9 Scope

The scope, in a program, is the enclosed context where the values and expressions are associated. The
type of a scope determines what kind of entities it can contain and how it affects them. Scopes within
IPCoreL may consist of the following:

♦ declarations or definitions of identifiers
♦ statements or expressions which define an executable algorithm
♦ nests of declarations or functions

Variables are associated within scopes. Different scoping types affect how local variables in a block of
statements are bound.

Lexical Scoping

In lexical scoping, or static scoping, a name always refers to its local lexical environment. Lexical
scoping occurs when the scope of an identifier is fixed at compile time to some region in the source
code containing the identifier's declaration, meaning that an identifier is only accessible within that
region of code it is currently residing in.

Local Scope

Variables or methods that have local scope are accessible only in the current block of statements in
which the variable was defined. These variables are therefore limited to the most current block of code,
and outer blocks of code surrounding it may not have access to the variable.

Global Scope

With global scope, all variables defined at the very beginning of a program are available to the entire
program. The same rule applies to functions declared in a program. All variables declared at the
beginning of the function are available to the remaining code of said function.

Duplicate Variable Declaration

In IPCoreL, it is possible to “override” a local variable that is defined just before the current block
being accessed by the program. This is accomplished by declaring another variable of the same name
and data type inside the current block. The new variable will naturally have more scope than the first
declaration outside the current block. This is due to the outer variable being temporarily overridden and
the new variable's value hiding whatever the outer variable's value was previously.

10 Grammar

The following illustrates the grammar of IPCoreL that has been dissected throughout this reference
manual. The typewriter style words and symbols are terminals of IPCoreL, these represent the
keywords and functions.

main-program:
 main-program variable-decl
 main-program function-decl

function-type-specifier:
 void

 int

 float

variable-type-specifier:
 int

 float

 char

 string

 bool

function-decl:
 function-type-specifier function-identifier (formal-opt) {variable-decl-list, statement-list};

function-identifier:
 variable-identifier
 throughput

 jitter

 latency

 rtt

 header

 packet

 opensock

 sendmsg

 recvmsg

formal-opt:
 empty-formal-list
 formal-list

formal-list:
 variable-identifier
 formal-list, variable-identifier

variable-decl-list
 empty-variable-list
 variable-decl-list, variable-decl

variable-decl:
 variable-type-specifier variable-identifier;

statement-list:
 statement
 statement-list statement

statement:
 return expression;
 expression;
 (expression-list);
 {expression-list};
 if(expression){statement-list};
 if(expression){statement-list} else{statement-list};

 if(expression){statement-list} elseif(expression){statement-lsit} else{statement-list};
 while(expression){statement-list};
 for(expression-opt; expression-opt; expression-opt) {statement-list};
 function-identifier(parameter-list);

parameter-list:
 parameter
 parameter-list, parameter

parameter:
 expression

expression:
 integer-lvalue
 float-lvalue
 string-lvalue
 character-lvalue
 variable-identifier
 additive-expression + multiplicative-expression
 additive-expression – multiplicative-expression
 multiplicative-expression * expression
 multiplicative- expression / expression

multiplicative-expression ** expression
 floating-additive-expression +. floating-multiplicative-expression
 floating-additive-expression –. floating-multiplicative-expression
 floating-multiplicative-expression *. floating-expression
 floating-multiplicative-expression /. floating-expression
 floating-multiplicative-expression **. floating-expression
 equality-expression == relational-expression
 equality-expression != relational-expression
 relational-expression > expression
 relational-expression < expression
 relational-expression >= expression
 relational-expression <= expression
 unary-expression++
 unary-expression--
 ++unary-expression
 --unary-expression
 !unary-expression
 expression = unary-expression
 expression= expression[expression-opt]
 expression = (expression)
 expression -> function-identifier(parameter-list)

additive-expression:
 expression

multiplicative-expression:
 expression

floating-additive-expression:
 expression

floating-multiplicative-expression:
 expression

equality-expression:
 expression

relational-expression:
 expression

unary-expression:
 expression
sequence-expression:
 empty-expression
 expression-list

expression-opt:
 empty-expression
 expression-list

expression-list:
 expression
 epression-list, expression

